Magnitude Matters:

Effect Size in Research and Clinical Practice

Will G Hopkins

AUT University, Auckland, NZ

- Why Magnitude Matters in Research
- Why Magnitude Matters in Clinical Practice
- Magnitudes of Effects
- Types of variables and models
- Difference between means
- "Slope"
- Correlation
- Difference of proportions
- Number needed to treat
- Risk, odds and hazard ratio
- · Difference in mean time to event

Background

- International Committee of Medical Journal Editors (icmje.org)
 - "Show specific effect sizes."
- "Avoid relying solely on statistical hypothesis testing..., which fails to convey important information about effect size."
- Publication Manual of the American Psychological Association · A section on "Effect Size and Strength of Relationship"
- 15 ways to express magnitudes.
- Meta-analysis
 - Emphasis on deriving average magnitude of an effect.

Why Magnitude Matters in Research

• Two reasons: estimating sample size, and making inferences. **Estimating Sample Size**

= innovation!

- · Research in our disciplines is all about effects.
- An effect = a relationship between a predictor variable and a dependent variable.
- Example: the effect of exercise on a measure of health.
- We want to know about the effect in a population.
- But we study a sample of the population.
- And the magnitude of an effect varies from sample to sample.
- For a big enough sample, the variation is acceptably small.
- How many is *big enough*?
 - Get via statistical, clinical/practical or mechanistic significance.
 - You need the smallest important magnitude of the effect.
 - See MSSE 38(5), 2006: Abstract 2746.

Making Inferences

- An inference is a statement about the effect in the population.
- Old approach: is the effect real (statistically significant)?
- If it isn't, you apparently assume there is no effect.
- Problem: no mention of magnitude, so depending on sample size...
- A "real effect" could be clinically trivial.
- "No effect" could be a clinically clear and useful effect.
- New approach: is the effect clear?
 - It's clear if it can't be substantially positive and negative.
 - That is, if the confidence interval doesn't overlap such values.
- New approach: what are the chances the real effect is important? • ...in a clinical, practical or mechanistic sense.
- Both new approaches need the smallest important magnitude.
- You should also make inferences about other magnitudes:
 - small, moderate, large, very large, awe-inspiring.

Why Magnitude Matters in Clinical Practice

- What really matters is cost-benefit.
- Here I am addressing only the benefit (and harm).
- So need smallest important beneficial and harmful magnitudes.
- Also known as minimum clinically important difference. "A crock"?
- In the absence of clinical consensus, need statistical defaults.
- Also need to express in units the clinician, patient, client, athlete, coach or administrator can understand.
- You should use these terms sometimes: trivial, small, moderate, large, very large, awe-inspiring.
- The rest of this talk is about these magnitudes for different kinds of effect.

Magnitudes of Effects

- Magnitudes depend on nature of variables.
- · Continuous: mass, distance, time, current; measures derived therefrom, such as force, concentration, voltage.
- · Counts: such as number of injuries in a season.
- Nominal: values are levels representing names, such as injured (no, yes), and type of sport (baseball, football, hockey). Ordinal: values are levels with a sense of rank order, such as a
- 4-pt Likert scale for injury severity (none, mild, moderate, severe).
- Continuous, counts, ordinals can be treated as numerics, but... As dependents, counts need generalized linear modeling.
- If ordinal has only a few levels or subjects are stacked at one end, analyze as nominal.
- Nominals with >2 levels are best dichotomized by comparing or combining levels appropriately.
- Hard to define magnitude when comparing >2 levels at once.

- Magnitude also depends on the relationship you model between • the dependent and predictor.
 - The model is almost always linear or can be made so.
 - Linear model: sum of predictors and/or their products, plus error.
 - Well developed procedures for estimating effects in linear models.
- Effects for linear models:

Dependent	Predictor	Effect	Statistical model
numeric Strength	nominal Trial	difference in means	regression; general linear;
numeric Activity	numeric Age	"slope" (difference per unit of predictor); correlation	mixed; generalized linear
nominal InjuredNY	nominal Sex	diffs or ratios of proportions, odds, rates, mean event time	logistic regression;
nominal SelectedNY	numeric Fitness	"slope" (difference or ratio per unit of predictor)	proportional hazards

Dependent	Predictor	Effect
numeric Strength	nominal Trial	difference or change in means
 You cor in the m of level: Clinical smalles Otherwi Also I You e the b · For It's bi · Co 	nsider the nean for p s of the pr or practic t importar (se use th known as (express the etween-sul many mean ased high rrection fac	difference or change airwise comparisons edictor. al experience may give tt effect in raw or percent units. e standardized difference or change. Cohen's effect size or Cohen's <i>d</i> statistic. e difference or change in the mean as a fraction of oject standard deviation (Δ mean/SD). asures use the log-transformed dependent variable. for small sample size. tor is 1-3/(4v-1), where v=deg. freedom for the SD.

The smallest important effect is ±0.2.

Measures of Athletic Performance

- For team-sport athletes, use standardized differences in mean to get smallest important and other magnitudes.
- For solo athletes, smallest important effect is 0.3 of a top athlete's typical event-to-event variability.
 - Example: if the variability is a coefficient of variation of 1%, the smallest important effect is 0.3%.
 - This effect would result in a top athlete winning a medal in an extra one competition in 10.
 - I regard moderate, large, very large and extremely large effects as resulting in an extra 3,5, 7 and 9 medals in 10 competitions. • Simulation produces the following scale:
 - <0.3
 - 0.3-0.9 0.9-1.6 1.6-2.5 2.5-4.0 >4.0 small moderate large very large awesome trivial

⋇

 Note that in many publications I have mistakenly referred to 0.5 of the variability as the smallest effect.

- Beware: smallest effect on athletic performance depends on how it's measured, because...
 - A percent change in an athlete's ability to output power results in different percent changes in performance in different tests.
 - These differences are due to the power-duration relationship for performance and the power-speed relationship for different modes of exercise.
 - Example: a 1% change in endurance power output produces the following changes...
 - 1% in running time-trial speed or time;
 - · ~0.4% in road-cycling time-trial time;
 - · 0.3% in rowing-ergometer time-trial time;
 - ~15% in time to exhaustion in a constant-power test.
 - · An indeterminable change in any test following a pre-load.

Dependent	Predictor	Effect
numeric Activity	numeric Age	"slope" (difference per unit of predictor); correlation
 A slope But unit hard to Exam yet -2 For co better Fits But Easier t Small 	is more p of predic define sm ple: -2% p 0% per de 0% per de onsistency to expres s with smal underestir o interpre est import <0.1 0. trivial s	ractical than a correlation. tor is arbitrary, so it's allest effect for a slope. er year may seem trivial, cade may seem large. with interpretation of correlation, set important effect of 0.2 SD for the dependent. nates magnitude of larger effects. For an explanation, see mesuates magnitude of larger effects. For an explanation, see mesuates orgeffecting hum the correlation, using Cohen's scale. ant correlation is ± 0.1 . Complete scale: 1-0.3 0.3-0.5 0.5-0.7 0.7-0.9 >0.9 mall moderate large very large awesome

• You <i>can</i> use correlation to assess nominal predictors.
 For a two-level predictor, the scales match up.
 For >2 levels, the correlation doesn't apply to an individual.
Magnitudes when controlling for something
 Control for = hold it equal or constant or adjust for it.
 Example: the effect of age on activity adjusted for sex.
• Control for something by adding it to the model as a predictor.
 Effect of original predictor changes.
 No problem for a difference in means or a slope.
 But correlations are a challenge.
• The correlation is either partial or semi-partial (SPSS: "part").
 Partial = effect of the predictor within a virtual subgroup of
subjects who all have the same values of the other predictors.
 Semi-partial = unique effect of the predictor with all subjects.
 Partial is probably more appropriate for the individual.
Confidence limits may be a problem in some stats packages.

Dependent	Predictor	Effect
nominal InjuredNY	nominal Sex	differences or ratios of proportions, odds, rates; difference in mean event time
 Subject differen Risk dif Good but tii Exam chance Small Numbe Numbe Numb Exam injure 	s all start t proportion ference = measure : me depenc ple: a - b = ce of one in est effect: r needed beer of subject to have ple: for ev d if the per	off "N", but ons end up "Y". Proportion a - b. injured (%) for an individual, lent. 83% - 50% = 33%, so <i>extra</i> three of injury if you are a male. $\pm 5\%$? Time (months) three of injury if you are a male. $\pm 5\%$? to treat (NNT) = 100/(a - b). exts you would have to treat or sample for one an outcome attributable to the effect. rery 3 people (=100/33), one <i>extra</i> person would be ople were males. NNT <20 is clinically important?

• Can convert exactly to relative risk if know a or b.

This presentation was down	loaded from:	
SPORTSCIENCE	<u>sportsci.org</u>	
A Peer-Reviewed Site for Sport Research		
See Sportscience 10, 2006		