

This slideshow is an updated version of the slideshow in:
Batterham AM, Hopkins WG (2005). Making meaningful inferences about magnitudes. Sportscience 9, 6-13. See link at sportsci.org.

• Other resources:

- Hopkins WG (2007). A spreadsheet for deriving a confidence interval, mechanistic inference and clinical inference from a p value. Sportscience 11, 16-20. See sportsci.org.
- Hopkins WG, Marshall SW, Batterham AM, Hanin J (2009). Progressive statistics for studies in sports medicine and exercise science. Medicine and Science in Sports and Exercise 41, 3-12. (Also available at sportsci.org: Sportscience 13, 55-70, 2009.)

Background

- A major aim of research is to make an inference about an effect in a population based on study of a sample.
- Null-hypothesis testing via the P value and statistical significance is the traditional but flawed approach to making an inference.
- Precision of estimation via confidence limits is an improvement.
 But what's missing is some way to make inferences about the
- clinical, practical or mechanistic significance of an effect.I will explain how to do it via confidence limits using values for
- the smallest beneficial and harmful effect.
- I will also explain how to do it by calculating and interpreting chances that an effect is beneficial, trivial, and harmful.

Hypothesis Testing, P Values and Statistical Significance

- Based on the notion that we can disprove, but not prove, things.
- Therefore, we need a thing to disprove.
- Let's try the null hypothesis: the population or true effect is zero.
- If the value of the observed effect is unlikely under this assumption, we reject (disprove) the null hypothesis.
- Unlikely is related to (but not equal to) the P value.
- P < 0.05 is regarded as unlikely enough to reject the null hypothesis (that is, to conclude the effect is not zero or null).
 - We say the effect is statistically significant at the 0.05 or 5% level.
 Some folks also say there is a real effect.
- P > 0.05 means there is not enough evidence to reject the null.
 - We say the effect is statistically non-significant.
 - Some folks also accept the null and say there is no effect.

Problems with this philosophy...

- We can disprove things only in pure mathematics, not in real life.
- · Failure to reject the null doesn't mean we have to accept the null.
- In any case, true effects are always "real", never zero. So...
- The null hypothesis is always false!
- Therefore, to assume that effects are zero until disproved is illogical and sometimes impractical or unethical.
- 0.05 is arbitrary.
- The P value is not a probability of anything in reality.
- Some useful effects aren't statistically significant.
- Some statistically significant effects aren't useful.
- Non-significant is usually misinterpreted as unpublishable.
- So good data don't get published.
- Solution: clinical significance or magnitude-based inferences via confidence limits and chances of benefit and harm.
- Statistical significance = null-based inferences.

•	 Making a more detailed call on magnitudes using chances of benefit and harm. 							
	harmful	tri	vial	beneficial	Chances (%) that the effect is harmful / trivial / beneficial			
	←negativ	/e-	0 -	oositive →	0.01/0.3/99.7 0.1/7/93 2/33/65 1/59/40 0.2/97/3 2/94/4 28/70/2 74/26/0.2 97/3/0.01 9/60/31	Most likely beneficial Likely beneficial Possibly beneficial Clinical: unclear possibly +ve Very likely trivial Likely trivial Possibly harmful Possibly harmful Very likely harmful Mechanistic and clinical: unclear		
	value c	value of effect statistic				Risk of harm >0.5% is unacceptable, unless chance of benefit is high enough.		

Probability	Chances	Odds	The effect beneficial/trivial/harmful	
< 0.005	<0.5%	<1:199	is almost certainly not	
0.005-0.05	0.5–5%	1:999–1:19	is very unlikely to be	
0.05-0.25	5–25%	1:19–1:3	is unlikely to be, is probably not	
0.25-0.75	25–75%	1:3–3:1	is possibly (not), may (not) be	
0.75-0.95	75–95%	3:1–19:1	is likely to be, is probably	
0.95-0.995	95–99.5%	19:1–199:1	is very likely to be	
>0.995	>99.5%	>199:1	is almost certainly	

 An effect should be almost certainly not narmful (<0.5%) and at least possibly beneficial (>25%) before you decide to use it.

- But you can tolerate higher chances of harm if chances of benefit are much higher: e.g., 3% harm and 76% benefit = clearly useful.
- I use an odds ratio of benefit/harm of >66 in such situations.

• Two examples of use of the spreadsheet for clinical chances:

]	threshol	d values
	value	e of	Conf	i.	deg. d	of	Confide	nce limits	for clinica	l chances
P value	value statistic 0.03 1.5		level (%)	freedo	m	lower	upper	positive	negative
0.03			90	90 18			0.4	2.6	1	-1
0.20	2.4		90		18		-0.7	5.5	1	-1
Both th	929	Chances (% or odds) that the true value of the statistic is								
effects	effects are clinically decisive,		clinically positive			clinically trivial		clinically negative		
clinica			ob (%)	C	odds	р	rob (%)	odds	prob (%)	odds
degicia			78		3:1		22	1:3	0	1:2071
uecisiv			ikely, probabl		able	unlikely, probably not		almost certainly not		
clear, or			78		3:1		19	1:4	3	1:30
significa	ant.	l	kely, probable		able	unlikely, probably not		very unlikely		

	How to Publish Clinical Chances Example of a table from a randomized controlled trial:							
	TABLE 1–Differences in improvements in kayaking sprint speed between slow, explosive and control training groups.							
	Mean improvement							
	Compared groups confidence limits Qualitative outcome ^a							
	Slow - control	3.1; ±1.6	Almost certainly beneficial					
	Explosive - control	2.6; ±1.2	Very likely beneficial					
Slow - explosive 0.5; ±1.4 Unclear								
	^a with reference to a smallest worthwhile change of 0.5%.							

- Problem: what's the smallest clinically important effect?
 - · If you can't answer this question, quit the field.
 - This problem applies also with hypothesis testing, because it determines sample size you need to test the null properly.
- Example: in many solo sports, ~0.5% change in power output changes substantially a top athlete's chances of winning.
- The default for most other populations and effects is Cohen's set of smallest values.
 - These values apply to clinical, practical and/or mechanistic importance...
 - Standardized changes or differences in the mean:
 - 0.20 of the between-subject standard deviation.
 - In a controlled trial, it's the SD of all subjects in the pre-test, not the SD of the change scores.
 - Correlations: 0.10.
 - Injury or health risk, odds or hazard ratios: 1.1-1.3.

- Problem: these new approaches are not yet mainstream.
 Confidence limits at least are coming in, so look for and
 - the importance of the lower and upper limits. You can use a spreadsheet to convert a published P value into
 - a more meaningful magnitude-based inference. • If the authors state "P<0.05" you can't do it properly.
 - If they state "P>0.05" or "NS", you can't do it at all.
 - Problem: these approaches, and hypothesis testing, deal
- with uncertainty about an effect in a population.
- But effects like risk of injury or changes in physiology or performance can apply to individuals.
 - Alas, more information and analyses are needed to make inferences about effects on individuals.
 - · Researchers almost always ignore this issue, because...
 - they don't know how to deal with it, and/or...
 - they don't have enough data to deal with it properly.

Summary

- Show the observed magnitude of the effect.
- Attend to precision of estimation by showing 90% confidence limits of the true value.
- Do NOT show P values, do NOT test a hypothesis and do NOT mention statistical significance.
- Attend to clinical, practical or mechanistic significance by...
 - stating, with justification, the smallest worthwhile effect, then...
 - interpreting the confidence limits in relation to this effect, or...
 estimating probabilities that the true effect is beneficial, trivial,
- and/or harmful (or substantially positive, trivial, and/or negative).
 Make a qualitative statement about the clinical or practical
- significance of the effect, using *unlikely, very likely*, and so on. • Remember, it applies to populations, not individuals.

For related articles and resources:

