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Conclusions
Click on the above topics to link to the slides.

Background

• We study an effect in a sample, but we want to know about the 
effect in the population.

• The larger the sample, the closer we get to the population.
• Too large is unethical, because it's wasteful.
• Too small is unethical, because the outcome will be indecisive.
• And you are less likely to get your study funded and published.y y g y y p

• The traditional approach is based on statistical significance.
• New approaches are needed for those who are moving away 

from statistical significance.
• We will present the traditional approach, two new approaches, 

and some useful stuff that applies to all approaches.
• A spreadsheet for all three approaches is available at 

sportsci.org.

Sample Size for Statistical Significance

• In this old-fashioned approach, you decide whether an effect is 
“real”: that is, statistically significant (non-zero).
• If you get significance and you’re wrong, it’s a false-positive 

or Type I statistical error.
• If you get non-significance and you’re wrong, it’s a false negative 

or Type II statistical error.
• The defaults for acceptably low error rates are 5% and 20%• The defaults for acceptably low error rates are 5% and 20%.
• The false-negative rate is for the smallest important value of the 

effect, or the “minimum clinically important difference”. 
• Solve for the sample size by assuming a sampling distribution for 

the effect.

• The Type I error rate (5%) defines a critical value of the statistic.
• If observed value > critical value, the effect is significant.
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Sample Size for Statistical Significance: How It Works

area = 20%

probability distribution of observed 
values, if true value = 
smallest important valuedistribution of observed 

values, if true value = 0
critical value

area = 2.5%
area = 2.5%

• When true value = smallest important value, the Type II error 
rate (20%) = chance of observing a non-significant value.

• Solve for the sample size (via the critical value).

value of effect statistic
0 positivenegative

critical value

smallest important value

Sample Size for Clinical Outcomes

• In the first new approach, the decision is about whether to use 
the effect in a clinical or practical setting.
• If you decide to use a harmful effect, it’s a false-positive

or Type 1 clinical error.
• If you decide not to use a beneficial effect, it’s a false-negative

or Type 2 clinical error.
S t d d f lt  f  t bl   t   0 5% d 25%• Suggested defaults for acceptable error rates are 0.5% and 25%.

• Benefit and harm are defined by the smallest clinically important 
effects. 

• Solve for the sample size by assuming a sampling distribution.
• Sample sizes are ~1/3 those for statistical significance.
• The traditional approach is too conservative?

• P=0.05 with the traditional sample size implies one chance in a million 
of the effect being harmful.

• The smallest clinically important effects define harmful, beneficial 
and trivial values.

• At some decision value, Type 1 clinical error rate = 0.5%.
and Type 2 clinical error rate = 25%
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Sample Size for Clinical Outcomes: How It Works

probabilitydistribution of true values 

• Now solve for the sample size (and the decision value).
value of effect statistic

0 positivenegative

area = 25%

distribution of true values 
if observed value = 

decision value
smallest beneficial value
decision value

area = 0.5% 
smallest harmful value
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Sample Size for Precise Estimates

• In the second new approach, the decision is about whether the 
effect has adequate precision in a mechanistic setting.
• “Precision” is defined by the confidence interval: the uncertainty in 

the true effect.
• The suggested default level of confidence is 90%.
• “Adequate” implies a confidence interval that does not permit 

substantial values of the effect in a positive and negative sensesubstantial values of the effect in a positive and negative sense.
• Positive and negative are defined by the smallest mechanistically 

important effects. 
• Solve for the sample size by assuming a sampling distribution.
• Sample sizes are similar to those for the first new approach.

• The smallest substantial positive and negative values define 
ranges of substantial values.

• Precision is unacceptable if the confidence interval overlaps 
substantial positive and negative values.
SUBSTANTIAL NEGATIVE  SUBSTANTIAL NEGATIVE  SUBSTANTIAL POSITIVESUBSTANTIAL POSITIVETRIVIALTRIVIAL

Sample Size for Precise Estimates: How It Works

unacceptable
acceptable

• Solve for sample size in the acceptable worst-case scenario.
value of effect statistic

0 positivenegative

smallest substantial
positive value

smallest substantial
negative value

acceptable

acceptable worst case
acceptable

General Issues

• Check your assumptions and sample-size estimate by 
comparing with those in published studies.
• But be skeptical about the justifications you see in Methods 

sections.
• Most are seriously flawed.
• Most either do not mention the smallest important effect or choose 

 l   t  k  th  l  i  t bla large one to make the sample size acceptable.
• You can justify a sample size on the grounds that it is similar to 

those in similar studies that produced clear outcomes.
• But effects are clear often because they are substantial.  
• If yours turns out to be smaller, it may need a larger sample.

• Sample size is sensitive to the value of the smallest effect.
• Halving the smallest effect quadruples the sample size.
• You have to justify your choice of smallest effect.  Defaults:

• Standardized difference or change in the mean: 0.20
• Correlation: 0.10
• Hazard, risk or odds ratio: ~1.20.

Big mistakes occ r here!• Big mistakes occur here!
• e.g., use of the sampling standard error of the outcome statistic to 

define the smallest effect.

• Bigger effects need smaller samples for decisive outcomes.
• So start with a smallish cohort, then add more if necessary.
• Aka “group-sequential design”, or “sample size on the fly”.
• But this approach produces upward bias in effect magnitudes that 

needs sophisticated analysis to fix.
• An unavoidably suboptimal sample size is ethically defensible…
• …if the true effect is large enough for the outcome to be conclusive.  
• And if it turns out inconclusive, argue that it will still set useful limits 

on the likely magnitude of the effect…
• …and should be published, so it can contribute to a meta-analysis. 

• Even optimal sample sizes can produce inconclusive
outcomes, thanks to sampling variation.
• The risk of such an outcome, estimated by simulation, is a 

maximum of ~10%, when the true effect = critical, decision and null 
values for the traditional, clinical and precision approaches.

• Increasing the sample size by ~25% virtually eliminates the risk.

• Sample size depends on the design.
• Non-repeated measures studies (cross-sectional, prospective, 

case-control) usually need hundreds or thousands of subjects.
• Repeated-measures studies (controlled trials and crossovers) 

usually need scores of subjects. 
• Crossovers need less than parallel-group controlled trials 

(down to ¼), provided subjects are stable during the washout.
• Sample-size estimates for prospective studies and controlled 

trials should be inflated by 10-30% to allow for drop-outs…
• …depending on the demands placed on the subjects, the duration 

of the study, and incentives for compliance. 
• The problem of unadjusted confounding in observational 

studies is NOT overcome by increasing sample size.
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• Sample size depends on validity and reliability.
• Effect of validity of a dependent or predictor variable:

• Sample size is proportional to 1/v2 = 1+e2/SD2, where
– v is the validity correlation of the dependent variable,
– e is the error of measurement, and 
– SD is the between-subject standard deviation of the criterion 

variable in the validity study.
• So r = 0.7 implies twice as many subjects as for r = 1.

• Effect of reliability of a repeated-measures dependent variable:• Effect of reliability of a repeated-measures dependent variable:
• Sample size is proportional to (1 – r) = e2/SD2, where 

– r is the test-retest reliability correlation coefficient, 
– e is the error of measurement, and 
– SD is the observed between-subject standard deviation. 

• So really small sample sizes are possible with high r or low e.
• But <10 in any group might misrepresent the population. 

• Make any compared groups equal in size for smallest total 
sample size.
• If the size of one group is limited by availability of subjects, recruit 

more subjects for the comparison group.
• But >5x more gives no practical increase in precision.
• Example: 100 cases plus 10,000 controls is little better than 100 

cases plus 500 controls.
• Both are equivalent to 200 cases plus 200 controls.

• With designs involving comparison of effects in subgroups…
• You will need twice as many subjects in each subgroup.
• Example: a controlled trial that would give adequate precision with 

20 subjects would need 40 females and 40 males for comparison of 
the effect between females and males.  

• So don't go there as a primary aim without adequate resources.
• But you should be interested in the contribution of subject 

characteristics to individual differences and responses.
• The characteristic effectively divides the sample into subgroups.
• So you need 4x as many subjects to do the job properly!
• This bigger sample also gives adequate precision for the standard 

deviation representing individual responses to a treatment.

• Mixing unequal numbers of females and males (or other 
substantially different subgroups) can decrease the effective 
sample size.
• The effect under study has to be estimated separately in females 

and males, then averaged.  Here is an example of the resulting 
effective sample sample (for 90% conf. limits):

No. of
males

No. of 
females

Total
sample size

Effective
sample size

10 10 20 20
10 5 15 13
10 4 14 10
10 3 13 7

Less than the 
number of males!

• With more than one effect, you need a bigger sample size to 
constrain the overall chance of error.
• For example, suppose you got chances of harm and benefit…

…for Effect #1: 0.4% and 72%
…for Effect #2: 0.3% and 56%. 

• If you use both, chances of harm = 0.7% (> the 0.5% limit).
• But if you don’t use #2 (say), you fail to use an effect with a good 

chance of benefit (> the 25% limit).
Solution: increase the sample size• Solution: increase the sample size…
…to keep total chance of harm <0.5% for effects you use,
…and total chance of benefit <25% for effects you don’t use.

• For n independent effects, set the Type 1 error rate (%) to 0.5/n 
and the Type 2 error rate to 25/n.

• The spreadsheet shows you need 50% more subjects for n=2 
and more than twice as many for n=5.

• For interdependent effects there is no simple formula.

• Sample size for a case series defines norms adequately, via 
the mean and SD of a given measure. 
• The default smallest difference in the mean is 0.2 SD, so the 

uncertainty (90% confidence interval) needs to be <0.2 SD.
• Resulting sample size is ¼ that of a cross-sectional study, ~70.
• Resulting uncertainty in the SD is ×⁄÷1.15, which is OK.
• Smaller sample sizes will lead to less confident characterization of 

future cases.
• Larger sample sizes needed to characterize percentiles, 

especially for non-normally distributed measures.
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• For single-subject studies, “sample size” is the number of 
repeated observations on the single subject.
• Use the sections of the spreadsheet for cross-sectional studies.
• Use the value for the smallest important difference that applies to 

sample-based studies.
• Use the subject’s within-subject SD as the “between-subject SD”.

• The within is often << the between, so sample size is often small.
• Assume any trend-related autocorrelation will be accounted for by y y

your model and will therefore not entail a bigger sample.

• Sample size for measurement studies is not included in 
available software for estimating sample size.  
• Very high reliability and validity can be characterized with as 

few as 10 subjects.  
• More modest validity and reliability (correlations ~0.7-0.9; errors 

~2-3× the smallest important effect) need samples of 50-100 
subjects.  

• Studies of factor structure need many hundreds of subjects.y j

• Try simulation to estimate sample size for complex designs.
• Make reasonable assumptions about errors and relationships 

between the variables.  
• Generate data sets of various sizes using appropriately 

transformed random numbers.  
• Analyze the data sets to determine the sample size that gives 

acceptable width of the confidence interval.  

Conclusions

• You can base sample size on acceptable rates of clinical errors 
or adequate precision.

• Both make more sense than sample size based on statistical 
significance and both lead to smaller samples.

• These methods are innovative and not yet widely accepted.
• So we recommend using the traditional approach in addition to g pp

the new approaches.
• Remember to ramp up sample size for: 
• measures with low validity
• multiple effects
• comparison of subgroups
• individual differences.

• If short of subjects, do an intervention with a reliable dependent.

Presentation, article and spreadsheets:

S  S t i  10  63 70  2006See Sportscience 10, 63-70, 2006

• The decision value is such that chance of observing a smaller 
value, given the true value, is the Type 2 error rate (25%)…

• …and if you observe the decision value, there has to be a 
chance of harm equal to the Type 1 error rate (0.5%).

Sample Size for Suspected Large True Effects

probability
HARMFUL  HARMFUL  TRIVIALTRIVIAL BENEFICIALBENEFICIAL

distribution of observed values, 
given the true value

distribution of true values, 
when observed value

• Now solve for the sample size (and the decision value).
value of effect statistic

0 positivenegative

decision value
true value

area = 25%

given the true valuewhen observed value
= decision value

area = 0.5% 
smallest harmful value


