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Data analysis that fails to account for independent groups defined by a subject 
characteristic (e.g., sex) or by a design characteristic (e.g., treatment order) 
can result in bias, confounding, and loss of precision in the outcome.  Combin-
ing the outcomes from separate analyses of the groups is a robust approach to 
the problem that is easily achieved with the spreadsheet presented here.  Dif-
ferences in the outcome between groups represent the effect of the character-
istic on the outcome, while the mean of the outcomes represents the outcome 
adjusted appropriately for the characteristic. The spreadsheet calculates confi-
dence limits for the differences and for the mean from the confidence limits for 
the outcome in each group.  It also presents magnitude-based inferences for 
the differences and mean.  There are separate cells in the spreadsheet for 
outcomes represented by means or other normally distributed statistics, relative 
rates (risk, odds and hazard ratios) or other log-normally distributed statistics, 
and correlation coefficients. KEYWORDS: confidence limits, confounding, co-
variate, inference, modeling. 
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Update May 2009.  Corrected an error in 

the estimation of chances of benefit and harm 
when combining correlation coefficients as 
differences (2 groups) and as custom effects (>2 
groups). 

Update Oct 2008.  Understanding the dif-
ference between fixed effects and random ef-
fects will help you decide when you can use 
this spreadsheet and what to do when you can't 
use it.  See the note at the end of this article.    

I have also added correlation coefficients to 
the spreadsheet for >2 groups.  Analysis of 
correlations requires the Fisher transformation, 
and as with all non-linear transformations other 
than the log, estimation of the magnitude of the 
back-transformed effect requires specification 
of some reference value.  A cell is included for 
this purpose. 

Update Oct 2007.  The spreadsheet now in-
cludes customizable clinical and mechanistic 
inferences (Hopkins, 2007). 

 
A subject characteristic such as sex or a de-

sign characteristic such as order of treatments in 
a crossover divides a sample into two or more 
groups.  When you study the effect of some-
thing on the subjects–either as an intervention 

in an experimental design or as a relationship 
between measures such as health, activity and 
performance in a non-experimental design–the 
magnitude of the effect will always differ to 
some extent between the groups.  Failure to 
account for the groups in the analysis may 
therefore lead you to the wrong conclusion 
about the effect.  

The wrong conclusion can be the result of 
bias, confounding, and imprecision.  Bias arises 
when the proportion of subjects in the groups is 
not the same as the proportion in the popula-
tion.  For example, if you have twice as many 
males as females in the sample, the mean with-
out regard to sex will be biased towards males.  
Confounding occurs when the proportion of 
subjects in each group differs for different val-
ues of another characteristic in the analysis.  
For example, if you analyze for the effect of 
age without taking sex into account, and there 
are more males amongst the older subjects, the 
value of the effect you get for age will be partly 
an effect of sex; the effect of age is then said to 
be confounded by sex.  Finally the difference in 
the magnitude of the effect between the groups 
leads to imprecision, because the difference 
turns up as unexplained residual error that 
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makes a wider confidence interval for the ef-
fect.  For example, if the difference in an effect 
between males and females is twice the magni-
tude of the error within either group, the resid-
ual error in an analysis without regard to sex 
will be about 40% greater than with sex in the 
analysis, and the confidence interval will be 
correspondingly wider. (I derived this estimate 
from first principles and checked it using simu-
lation in another spreadsheet.) 

The spreadsheet that accompanies this arti-
cle provides a method of analysis that avoids 
these problems with groups.  The linear model-
ing procedures in statistical packages provide 
another method, but statistical packages have 
their own problems:  they are hard to use, the 
best are expensive, and all are a long way from 
presenting outcomes in a clinically or practi-
cally meaningful way. Furthermore, analysis of 
variance–the standard approach to including a 
subject characteristic representing groups–
accounts for different means between the 
groups, but it does not allow for different stan-
dard deviations in the groups.  Analysis of vari-
ance therefore leads to the wrong inferences 
when there are unequal numbers of subjects in 
the groups, because it effectively uses the 
equal-variances form of the t statistic instead of 
the unequal-variances form to derive confi-
dence limits or p values. The same problem 
applies to groups in repeated-measures 
ANOVA in the not infrequent situation of dif-
ferent errors of measurement in the groups. 
(These assertions are based on simulations I 
documented in a conference presentation.) 
Mixed modeling solves this particular problem 
by allowing estimation of various standard 
deviations, but mixed modeling is beyond the 
reach of most researchers; hence this article and 
spreadsheet. 

The spreadsheet works by combining out-
comes from separate analyses for each group.  
Differences in the outcome between groups 
represent the effect of the grouping variable on 
the outcome.  The mean of the outcomes across 
the groups represents the outcome adjusted 
appropriately for the effects of the grouping. 
The spreadsheet calculates confidence limits for 
differences and for the mean using the confi-
dence limits for the outcome in each group.  If 
you also enter a value for the smallest clinically 
or practically important effect, the spreadsheet 
presents magnitude-based inferences for the 

differences and mean using the approach of 
Batterham and Hopkins (2005).  There is also a 
cell showing a summary qualitative outcome, as 
described in the article on controlled trials in 
this issue (Hopkins, 2006).   

There are separate grids of cells in the 
spreadsheet for various kinds of outcome statis-
tic:  means or other statistics with sampling 
distributions of the t statistic; percent and factor 
effects with sampling distributions of the t sta-
tistic after log transformation; relative rates 
(risk, odds and hazard ratios) or other log-
normally distributed statistics; and correlation 
coefficients, whose sampling distribution is 
normal after z transformation (Fisher, 1921).  In 
the case of t-distributed statistics, I used the 
Satterthwaite (1946) approximation to calculate 
the degrees of freedom for the combined error 
variances derived from the confidence limits for 
each group. 

The approach of combining separate analy-
ses in this manner is robust to the effect of any 
differences in error between the groups, be-
cause a different error is automatically gener-
ated in each analysis. This approach also effec-
tively accounts for all interactions between the 
grouping variable and other predictors, so you 
do not have to worry about how to deal with the 
interaction terms in a full analysis.   However, 
you must be careful about the way you adjust 
for any covariates in the separate analyses.  For 
example, if age is a covariate, you should use 
the grand mean age to adjust the outcome in the 
separate analyses for females and males, if you 
want to control for age in the subsequent com-
parison or averaging of the outcome for females 
and males.  

To use the spreadsheet, you first perform the 
analysis of interest separately for each group 
with either a statistical package or another 
spreadsheet.  The spreadsheets I describe in an 
article in the current issue of this journal are 
suitable for the various kinds of controlled trial 
(Hopkins, 2006).  For each group you then 
enter the values of the outcome and its confi-
dence limits.  (If your stats package provides 
only p values, generate confidence limits from 
them using another spreadsheet at new-
stats.org.)  If the outcome is a difference in 
means, you also enter its associated error de-
grees of freedom.   

Percent differences in means have to be 
converted to factor differences and analyzed as 
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such when any of the percents or their com-
bined values are greater than 10%. The factor 
corresponding to x% is 1+x/100; for example, 
7%→1+7/100=1.07, 23%→1.23, 165%→2.65, 
and -23%→1-23/100=0.77. Convert the derived 
factor and confidence limits back into percents 
if they are less than about 1.5 (50%) or greater 
than about 0.5 (-50%), but otherwise report 
them as factors. 

When you have only two groups (e.g., fe-
males and males), use the first sheet in the 
spreadsheet. Enter outcomes for more than two 
groups in the second sheet, which allows you to 
combine the groups in various ways (e.g., the 
difference between an outcome in one sport and 
the mean of the outcome in two others).  These 
"custom" combinations are derived via weight-
ing factors that you insert for each group and 
that must add to exactly zero or one.  Examples 
are explained in the spreadsheet.  An error mes-
sage appears when the weights are invalid.  

The spreadsheet should get frequent use to 
adjust for order effects in a crossover.  Proper 
design of a crossover involves a Latin square to 
define the smallest number of groups of sub-
jects such that all subjects in a given group get 
the treatments in the same sequence, and over-
all every treatment follows every other treat-
ment the same number of times.  To adjust for 
any order effect, perform separate analyses for 
the treatment effects in each group, then aver-
age across all groups using the spreadsheet.  
This adjustment is especially important if there 
is a substantial order effect and the number of 
subjects is not the same in all groups. With only 
two groups, the magnitude of the order effect is 
half the difference in the outcome between the 
groups (use weights of 0.5 and -0.5), but you 
will have to figure out the appropriate sign.  
With more than two groups the algebra required 
to work out the order effects is too complex. 

It is important to understand that the confi-
dence limits for each group are combined by 
assuming the groups are independent–that is, by 
assuming the random variation you would get 
with repeated sampling in one group has no 
correlation with that of any other group.  
Groups represented by different subjects gener-
ally meet this requirement, but an important 
exception is controlled trials in which randomi-
zation to the groups has been balanced on the 
pre-test value of the dependent variable.  For 
such data, the outcomes are not independent 

unless you adjust for the pre-test value by in-
cluding it as a covariate in the analysis.  With-
out such adjustment, the confidence interval 
provided by the spreadsheet for differences 
between groups will usually be too wide and 
the confidence interval for the mean of the 
groups will usually be too narrow.  In the ab-
sence of any other information, there is no way 
to combine non-independent outcomes to avoid 
this problem.  Your only option is to analyze 
the original data using repeated-measures mod-
eling of some kind. 

One of the reviewers raised the question of 
whether there is any loss of precision when 
combining separate analyses compared with a 
single full analysis.  We put it to the test for a 
binary outcome variable with an assumed bi-
nomial distribution, and we got identical confi-
dence limits by the two methods.  Separate 
analyses of a normally distributed variable with 
only a few subjects in each group could lead to 
loss of precision compared with the full analy-
sis, but only if you made the unjustifiable as-
sumption in the full analysis that the groups had 
the same error.  For example, if you had five 
subjects in each group, the degrees of freedom 
for the error in the full analysis under the as-
sumption of equal errors would be 9, whereas in 
the combined separate analyses the degrees of 
freedom would be at most 8.  It is easy to show 
with the t statistic that the 90% confidence 
interval in the case of 8 degrees of freedom is 
only 6% wider than with 9 degrees of freedom.  
If the errors were different, there would be less 
than 8 degrees of freedom (as given by the 
Satterthwaite approximation), and the confi-
dence interval would be substantially wider.  
But if the errors were different, you must use 
different errors in the full analysis, and such an 
analysis gives an outcome identical to that via 
combining separate analyses.   

If your study is a Latin-squares balanced 
crossover of, say, four treatments, and you have 
only two subjects on each of the four treatment 
sequences, there will be a serious loss of preci-
sion unless you make the reasonable assump-
tion of equal error for a given comparison of 
treatments in each of the four groups.   Use the 
crossover spreadsheet for the analysis, which is 
based on this assumption, or if you can access 
mixed modeling, use it to adjust for the order 
effect and model some extra error for treat-
ments and/or trials where there are substantial 
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changes in the mean. 
Update: Analysis of Fixed vs Random Effects 

The spreadsheet is designed to compare or 
combine the levels of a fixed effect.  Examples 
of fixed effects (and their levels) are sex (male, 
female), a specific treatment effect (caffeine, 
placebo), and identified sports (American foot-
ball, rugby union, rugby league).  For the 
spreadsheet to give correct answers, values in 
each level must also be independent of those in 
the other levels, which will usually be the case 
if the subjects in each level are different from 
the subjects in the other levels.   

Do not use this spreadsheet to combine val-
ues of levels of a random effect.  The levels of 
a random effect represent a sample drawn ran-
domly from some population, such as all possi-
ble team sports, rather than specific identified 
sports that would be the same if you drew an-
other sample.  An even simpler example of a 
random effect is the identity of the subjects in 
any of the usual sample-based studies.  

A good check on whether an effect is fixed 
or random is to consider the various ways you 
could combine the levels.  If the mean and the 
standard deviation of the values are the only 
sensible combinations you can think of, chances 
are the effect is random.  If you can imagine 
combining the levels in other ways, as shown in 
the examples in the spreadsheet, and if a stan-
dard deviation of the values of the levels doesn't 
quite make sense, chances are the effect is 
fixed. 

The confidence interval for the mean of the 
levels of a random effect has to take into ac-
count the uncertainty arising from the fact that a 
different sample would give different levels of 
the random effect, each with different values. 
You can generate the confidence interval for the 
mean with the CONFIDENCE function in Ex-
cel, which uses the formula you learn about in 
Stats 101 classes: an appropriate value of the t 

statistic times the standard deviation divided by 
the square root of the sample size.  

Often there is an approach to the analysis of 
data that takes away the worry about whether 
an effect is fixed or random. For example, when 
you compare the means of two groups of sub-
jects with an unpaired t statistic, the identity of 
the subjects is a random effect and the identity 
of the groups is a fixed effect, but who cares?  
In other situations a good working knowledge 
of fixed and random effects–and skill with an 
advanced stats package–allow you to take into 
account non-uniformity of error and multiple 
levels of repeated measurement or other cluster-
ing of observations in complex data.  Appropri-
ate use of random effects also allows you to 
estimate individual responses to a treatment as a 
standard deviation, although my controlled-trial 
spreadsheets provide such estimates correctly in 
straightforward designs. For more information 
on fixed and random effects, see the slideshow 
on repeated measures.  

This update was reviewed by Stephen Marshall. 
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