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Most analyses require linear mixed modeling to properly account not only for 
mean effects but also for sources of variability and error in the data. In linear 
mixed models, means and their differences are specified with fixed effects, 
while variabilities and errors are specified with random effects (including resid-
uals) and are summarized as standard deviations. In this tutorial article, I ex-
plain how variables represent effects in linear mixed models and how identify-
ing clusters of observations in a dataset is the key to identifying the fixed and 
random effects. I also provide 15 programs written in the language of the Sta-
tistical Analysis System (SAS) to simulate data and analyze them with the gen-
eral linear mixed model, Proc Mixed, which is used when the dependent vari-
able is continuous. The analyses include simple linear regression, compari-
sons of group means and standard deviations, reliability, time series and con-
trolled trials with individual responses, and within-subject modeling (random 
intercepts and slopes). Finally, I explain how dependent variables representing 
counts or proportions require generalized linear mixed models, where the main 
difference is the specification of the residuals. 
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Other resources on mixed modeling at this site: 
a self-paced workshop introducing SAS Studio 
 

and basic mixed models; a short slideshow on 
mixed models, included in the workshop.   
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Introduction 
This article began as a series of informal 

Skype tutorials for a colleague who wanted to 
use mixed modeling. He was envious of my in-
tuitive ability to identify the fixed and random 
effects for any given study, and to specify the 
fixed- and random-effect models in the Statisti-
cal Analysis System (SAS). That intuitive ability 
is probably a result of over 35 years of working 
with such models in SAS, so we were hoping to 
develop an algorithmic or diagrammatic short-
cut for his benefit and for other younger re-
searchers.  

The short-cut proved elusive, but I came up 
with a fresh look at mixed modeling, based on 
identifying clusters in the data. This approach is 
almost an algorithm and should work for most 
newbies. With them and/or you in mind, I start 
the explanation by going back to the basics of 
what we mean by data, variables, effects, and 
models, then I identify the effects and build the 
models for various analyses where general linear 
mixed modeling reigns supreme. To make sure 
the models worked, and to enhance understand-
ing (sometimes my own, even now, as you will 
see), I simulated data for each analysis. The SAS 
code to simulate and analyze the data is included 
in this article as links (below some section head-
ings) to 15 programs that run in the full SAS 
package or in the free cloud version of SAS Stu-
dio.  

Each program opens as plain text in a browser. 
You can either copy and paste the text into a new 
program in SAS Studio, or download all the pro-
grams as this zipped file, unzip it, and upload 
them all at once into an appropriate new folder 
in SAS Studio. Run a given program first with-
out any modification. Each is written with macro 
variables whose values you can then change to 
see what happens (and thereby enhance under-
standing) with different sample sizes, means and 
SDs, effects, errors of measurement, individual 
responses, and so on.  

The dependent variable in all but two of the 
programs is maximum oxygen uptake 
(VO2max), with typical values of around 45 for 
kids with a range of ages around 13 y. (The var-
iable has the name ObsvdVO2max, for observed 
VO2max, in the programs, to distinguish it from 
TrueVO2max in the code that generates the sim-
ulated data.) For the benefit of non-exercise and 
non-sport scientists, VO2max is the maximum 
rate at which oxygen can be consumed in exer-

cise, here in units of milliliters of oxygen per mi-
nute per kilogram body mass. The values are al-
ready natural-log transformed and multiplied by 
100, which transforms all effects and standard 
deviations (SDs) to slightly less than the original 
percent values, when they are ~10% or less. In 
other words, the numbers you see in the simula-
tions for SDs, differences in means, and slopes 
(differences per unit of a numeric predictor) are 
effectively in percent units, and the original raw 
values are irrelevant. Most variables are like 
VO2max, in that they need log transformation 
for analysis, so this approach to the simulations 
should make it easy for you to choose SDs and 
effects in percent units for other such variables 
when you run the programs. The simulations 
work just as well for data that don't need log 
transformation, because I haven't back-trans-
formed the log-transformed effects and SDs to 
percents or factors. With real data requiring log 
transformation, you must back-transform. 

The focus is the fixed-effect and random-ef-
fect models, which, for reasons of clarity, I pre-
sent in this document with the minimum of op-
tions. The SAS code in the accompanying pro-
grams includes more options and other stuff with 
little or no explanation, including simulations, 
scatterplots, line diagrams and/or bar graphs of 
the original data, and scatterplots of residuals vs 
predicteds and residuals vs predictors, where rel-
evant. If you haven't used SAS Studio before, 
follow this link (Hopkins, 2022a) to a workshop 
focused more on the practicalities of the use of 
SAS Studio for mixed models. Download and 
unzip the workshop, open Read me first.docx, 
and follow the instructions therein. You may 
need to work through some of the workshop doc-
uments to get a better understanding of the rele-
vant SAS coding or to use SAS in a point-and-
click fashion. 

The programs also don't include coding to deal 
with sampling uncertainty beyond confidence 
limits. If you want to use these programs with 
your own data, I suggest you insert the resulting 
effects and confidence limits into my spread-
sheet Combine/compare effects (Hopkins, 2006) 
on the tab for 1 or more groups or statistics. 
When you also insert a smallest important value 
(if necessary, expressed as a factor and log-trans-
formed), the spreadsheet generates probabilities 
for trivial and substantial magnitudes that can be 
interpreted in a Bayesian fashion as probabilities 
of the true magnitude, or the probabilities can be 
used as p values for testing substantial and non-

https://www.sas.com/en_us/software/studio.html
https://www.sas.com/en_us/software/studio.html
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substantial hypotheses (inferiority, superiority, 
and equivalence testing). Note that the smallest 
and other magnitude thresholds for standard de-
viations are half those for mean effects (Smith & 
Hopkins, 2011). Please, don't test the nil hypoth-
esis, don't show the corresponding traditional p 
value, and don't state whether the effect is statis-
tically significant or non-significant. I've dealt 
with this issue of sampling uncertainty exten-
sively elsewhere (Hopkins, 2022b).  

The programs all use Proc Mixed in SAS to 
realize a general linear mixed model, which is 
appropriate for a continuous dependent variable. 
I haven't provided programs for dependent vari-
ables that need generalized linear mixed models, 
with Proc Glimmix or Proc Phreg in SAS. The 
main differences with modeling such variables 
are the specification of the residuals and the in-
terpretation of the effects and SDs as count, odds 
and hazard ratios, which I do explain in the final 
section.  

Machine learning (or neural-net modeling) is 
another approach to data analysis, but this ap-
proach works only with large datasets, and it 
does not perform well with repeated measure-
ments. See the section on monitoring in the 2021 
ECSS conference report for more. 

To all users of the R stats package, my apolo-
gies: a few years ago, I found the mixed model 
in R too limiting, and I struggled with the cod-
ing. I hope someone with R smarts will consider 
adapting my programs and publishing them. 
Datasets 

A dataset consists of rows of data in a spread-
sheet, where the first row is the names of the var-
iables, and the subsequent rows are the values of 
the variables. In SAS, each row of values is 
called an observation: the single values of all 
the variables for one subject on one testing or 
assessment occasion. The subject is usually a 
person, but a dataset might consist of rows of 
values of something else, such as a sports match. 
In mixed modeling, the data must be in "long" 
format; that is, any repeated measurements on 
subjects must go down the spreadsheet with an 
appropriate variable to identify the repeats (e.g., 
Trial, with values pre and post). Repeated meas-
urements must not go across the spreadsheet 
(i.e., in "wide" format) with a different variable 
for each repeat (e.g., VO2maxPre, 
VO2maxPost); convert all such repeats to long 
format, either with paste-transpose in Excel or 
with a data step in SAS. 

Numeric and Nominal Variables 
Identify the numeric variables in your da-

taset; for example, Age (e.g., in years), Weight 
(e.g., in kg), and VO2max (e.g., in ml/min/kg). 
These are sometimes known as continuous var-
iables, which means the numbers can have an in-
finite number of decimal places. A variable with 
integers as values, such as a count of injuries, is 
not strictly continuous, but it is numeric and 
treated as continuous in most analyses (e.g., its 
mean can have a decimal place: 2.6 injuries per 
player per season). 

Identify the nominal variables in your da-
taset; for example, ChildID, Sex, Country. Nom-
inal variables have names as values. The differ-
ent values are also known as levels. There must 
be at least one nominal variable in the dataset: 
the identity of each observation (which doubles 
as the identity of the subjects, when there is no 
repeated measurement). Nominal variables 
might have numbers to identify the levels, but 
the numbers are to be treated as character strings. 
Or to put it another way, if you can replace the 
numbers with names of people or things, you can 
keep the numbers, but the variable is to be 
treated as nominal. With mixed modeling in 
SAS, you must declare nominal variables as such 
using a class statement (short for classification 
variable), regardless of whether the levels are 
numbers or names. Note also that you can create 
a nominal variable from a numeric variable by 
parsing the numeric values into groups; for ex-
ample, convert Age into AgeGroup, with levels 
prepubertal, peripubertal, postpubertal. 
Effects and Models 

Important research is all about effects; for ex-
ample, what is the effect of sex on fitness, what 
is the effect of X on Y, or more generally, what 
is the effect of a predictor variable on a de-
pendent variable? The way in which a predictor 
variable affects a dependent variable is quanti-
fied with a model or equation, in which the val-
ues of a dependent variable are equal to some 
function of the values of one or more predictor 
variables. Almost all models are linear, of the 
form Y = a + b*X1 + c*X2 +…, where Y is the 
dependent variable and X1, X2,… are the predic-
tor variables. The a, b, c,… are called parame-
ters or coefficients, and their values are esti-
mated by the stats package. The model predicts 
the value of the dependent variable for any given 
values of the predictor variables.  

If the dependent variable is continuous, the 
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model is a general linear model, including sim-
ple linear regression (one numeric predictor), 
multiple linear regression (two or more nu-
meric predictors), analysis of variance (one or 
more nominal predictors) and analysis of covar-
iance (one or more nominal and one or more nu-
meric predictors). If the dependent variable is a 
count or a proportion, the model is known as a 
generalized linear model, of which there are 
several: Poisson regression (for counts); lo-
gistic, log-odds, binomial or multinomial re-
gression (for proportions); and log-hazard, pro-
portional-hazards, or Cox regression (for pro-
portions per unit time).  

The first term in a linear model is a constant 
called the intercept; it really is the Y intercept 
in a simple linear regression, which represents a 
straight line, Y = a + b*X. The effect of each 
predictor variable on the dependent variable is 
given by its coefficient (b, c, and so on). Each 
coefficient is a slope; its units are the units of Y 
per unit of X. In other words, if you change X by 
one unit, you change Y by an amount given by 
the coefficient of X. The effect of X is its coeffi-
cient, but we also refer to X itself as an effect: 
predictor variables are also called effects. 

Nominal effects are represented in a linear 
model by dummy variables, one for each level 
of the variable. Each dummy variable has only 
two values, 0 and 1. For example, Sex might be 
represented by three dummy variables: Female 
(say), having the value 1 if the observation 
comes from a female and 0 otherwise; Male 
(say), having the value 1 if the observation 
comes from a male, and 0 otherwise; and Other 
(say), having the value 1 if the observation 
comes from something other than a female or 
male, and 0 otherwise. Stats packages do this 
dummy coding for you; all you have to do is 
specify that the variable is nominal. If there is at 
least one nominal effect in the model, you don't 
need an intercept, because each level of a nomi-
nal effect represents an intercept. If you include 
an intercept, it becomes one of the levels of the 
nominal effect, and that level is effectively re-
moved by giving it a coefficient of zero. (You 
don't have to understand this process; it's done 
automatically by the stats package.) Notice that 
effects of nominal variables are still slopes. For 
example, the effect of being male is the differ-
ence in Y per unit of the dummy variable Male. 
But the dummy variable has only two values, 0 
and 1, so the effect on Y per unit of the dummy 
variable is the difference between being a male 

(Male=1) and not being a male (Male=0). 
When you have more than one predictor vari-

able in a linear model, the effect of each predic-
tor is its effect when you hold the other predic-
tors constant. In other words, it's the effect un-
contaminated by differences or changes in the 
other variables. This interpretation is an inescap-
able and wonderful consequence of the fact that 
the model is a sum of the predictor variables 
multiplied by their coefficients. Each effect is 
said to be adjusted for or conditioned on all the 
other effects.  
Clusters (Groups, Subsets) of Observations 
01 Simple linear regression.sas 
02 Comparison of means.sas 
03 Comparison of means+covariate.sas 

Almost all analyses involve clusters (i.e., 
groups or subsets) of observations defined by 
nominal variables. For example, Sex can define 
two or more clusters: the subset of observations 
for boys, the subset for girls, and the subset(s) 
for any of the LGBTQIA+ designations. You es-
timate means of the clusters (e.g., the mean for 
boys and the mean for girls), differences in the 
means of the clusters (e.g., the mean for boys mi-
nus the mean for girls, which is the effect of 
Sex), standard deviations representing differ-
ences between the values within each cluster 
(e.g., the SD for the boys and the SD for the 
girls), and standard deviations representing dif-
ferences between the means of each cluster, 
when there are enough of them and the nominal 
variable is a random effect–see later.  

If you have only one nominal variable in the 
dataset, for example ChildID, then you can’t 
have any clusters, because there is only one ob-
servation for each child, and there is no way to 
get a cluster for each child or clusters of different 
kinds of children. But you can still do an analysis 
with the numeric variable(s). For example, what 
is the effect of Age on VO2max? The simplest 
analysis for this effect would be a simple linear 
regression. In SAS you specify this analysis with 
this simple statement:  
model VO2max=Age; 
This model represents the following equation of 
a straight line: 

VO2max = Intercept + Slope*Age. 
You don't have to state Intercept in the model, 
because SAS assumes there is always an inter-
cept in a linear model, and it estimates it by de-
fault. And you don't have to state Slope* in front 
of Age, because SAS assumes that you want the 
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slope (that's what the analysis is all about–the ef-
fect of Age as a slope), and it estimates it as a 
coefficient. 

Analyses get more interesting when you have 
one or more nominal variables additional to the 
nominal variable representing each observation 
in the dataset. If you have Sex, each level of Sex 
represents clusters of different kids. If you have 
AgeGroup, each level of AgeGroup represents 
clusters of different kids, and so on. So, once you 
have two nominal variables (e.g., ChildID plus 
something else), you can have clusters for one of 
them: the variable that has more than one obser-
vation for each of its levels. (Some, but not all, 
levels can have just one observation, but don't 
worry about that.) You can now do an analysis 
formerly known as an analysis of variance 
(ANOVA), by predicting a dependent variable 
(e.g., VO2max) with a nominal variable (e.g., 
Sex). The linear model predicts the mean 
VO2max for each level of Sex. In SAS, you do 
it with this statement: 
model VO2max=Sex; 
SAS now estimates two or more "intercepts": 
one for each level of Sex. Here they are just the 
means for each level. 

When you have two additional nominals, you 
can have not only two different kinds of cluster 
but also a cluster of clusters. For example, if you 
have ChildID, Sex and AgeGroup, then you can 
have clusters of different sexes, clusters of dif-
ferent age groups, and clusters of different sexes 
within each age group (or equivalently, clusters 
of different age groups within each sex). You 
represent clusters of clusters with an interaction 
of nominal variables, in this case Sex*Age-
Group: if Sex has two levels, and AgeGroup has 
three levels, there are up to 2*3=6 different clus-
ters identified by the levels of Sex and Age-
Group: boys prepubertal, boys peripubertal, 
boys postpubertal, girls prepubertal, girls 
peripubertal, girls postpubertal. You can spec-
ify the interaction equally as AgeGroup*Sex, in 
which case the clusters would be prepubertal 
boys, prepubertal girls, peripubertal boys, 
peripubertal girls, postpubertal boys, postpu-
bertal girls. Again, you can do an ANOVA, in 
which you predict a dependent variable with 
Sex*AgeGroup. Actually, all stats packages al-
low you to predict the dependent variable with 
the two nominal variables as well as their inter-
action. In SAS it would be: 
model VO2max=Sex AgeGroup 
Sex*AgeGroup; 

In such a model, Sex and AgeGroup are 
known as main effects. With this model, you can 
use the least-squares means (lsmeans) state-
ment to easily get the overall means for the lev-
els of Sex and the difference between the two 
means, the overall means for the levels of Age-
Group and the three pairwise difference between 
the three means, and the six means represented 
by Sex*AgeGroup and all 15 of the pairwise dif-
ferences between the six means, if you want 
them. If you just specify Sex*AgeGroup as the 
predictor, you can still get all those means and 
comparisons of means, but it takes a bit more 
programming to get some of them (in SAS, using 
estimate and/or lsmestimate statements). 

You can add numeric variables to an ANOVA 
to get what was formerly known as an analysis 
of covariance (ANCOVA). A numeric variable 
is known as a covariate in such an analysis. As 
an example of the simplest ANCOVA, predict 
VO2max with Sex (nominal) and Age (nu-
meric). If these two variables are in the model as 
main effects only, you effectively fit two straight 
lines in the scatterplot of VO2max vs Age, with 
the same slope (specified by Age) and different 
intercepts for each sex (specified by Sex). If you 
add the interaction Sex*Age, you get different 
slopes as well as different intercepts for each sex. 
You can leave out the main effect for Age, but 
either way, you must use estimate statements 
to get the slope averaged over the boys and the 
girls (if you want that). Don't ever leave out the 
main effect for Sex: I can't imagine a real dataset 
where there would be only one intercept but dif-
ferent slopes. 
Fixed Effects  

In the previous examples, the nominal varia-
bles Sex and AgeGroup had levels that would 
not change, if you were to repeat the study. Or to 
put it another way, those levels would always be 
represented, if you were to repeat the study. 
Hence the levels are fixed, and these variables 
are therefore called fixed effects in the linear 
model. (They can also contribute to random ef-
fects–see later.) Fixed effects normally have just 
a handful of levels. 

It's important to identify all the nominal varia-
bles in your dataset that are fixed effects. Here 
are more examples of such variables: Trial in a 
time series or controlled trial (with levels such as 
pre, mid, post); Group in a comparison of two or 
so groups of individuals (e.g., sedentary, active); 
and Treatment in a controlled trial or crossover 
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(e.g., control, experimental). 
Numeric variables such as Age are always 

fixed effects in a linear model, because they are 
in the model as a single variable. Age is a bit like 
a nominal variable with only one level and there-
fore only one dummy variable, except that the 
variable has the values of the numeric variable 
(12.3, 14.6…), not just 0 and 1. 

Any interaction of fixed effects is also a fixed 
effect, including the interaction of nominal fixed 
effects with numeric variables (e.g., Sex*Age). 
A numeric variable like Age can also be entered 
in the model as itself and as interactions with it-
self, if a polynomial non-linear effect of the var-
iable is required; for example a cubic in Age 
would be specified with Age Age*Age 
Age*Age*Age. Again, these are all fixed ef-
fects. 
Random Effects and Residuals 

Some nominal variables have levels that are a 
random sample of values. Or to put it another 
way, if you were to repeat the study with a dif-
ferent sample, all the levels of the nominal vari-
able would change. The simplest example is the 
nominal variable representing the identity of the 
subjects in the dataset: do the study again with a 
new sample and all the subjects will be different. 
Such variables are random effects; they have 
usually more than just a handful of values in your 
sample, and they have an infinite number of val-
ues in the population represented by your sam-
ple. 

It's important to identify all the nominal varia-
bles in your dataset that are random effects and 
to include them appropriately in the linear 
model. Why? Because you want the results of the 
analysis to apply to all possible levels of the var-
iables: all children, athletes, teams, matches, and 
so on. If you include a nominal variable as a 
fixed effect, the analysis applies only to the lev-
els of the variable in your dataset.  

In the previous examples of analyses with 
fixed effects, ChildID was actually a random ef-
fect. But each child was represented only once in 
the dataset, so there were no clusters of observa-
tions within each child. There was therefore no 
need to specify ChildID in the model, because 
there is no mean value to calculate for each child. 
If you tried to specify ChildID as a fixed effect 
(or a random effect–see below), you would get 
an error. Why? Because the different values of 
ChildID appear only once, so specifying it as an 
effect is asking the linear model to estimate a 
mean for each level of ChildID. The analysis 

can't even get started, because the "mean" for 
each child is simply the child's observed value, 
so there is nothing to calculate. Of course, you 
can estimate means for Sex and AgeGroup, but 
only if ChildID is not included. 

ChildID was not included in the previous anal-
yses, but there is a sense in which it was there all 
the time. Think about a fixed-effect model, say 
VO2max=Sex. This model predicts two mean val-
ues, one for boys and one for girls. But each boy 
has a value of VO2max that is different from the 
mean for boys, and ditto each girl; that is, each 
observed value is different from the mean. The 
difference between the observed value and the 
predicted mean value is an error that the model 
makes about predicting each individual boy and 
each individual girl. That error is called a resid-
ual in the analysis: it's the observed value of the 
dependent variable for each observation minus 
the predicted value for that observation. In a sim-
ple linear regression, multiple linear regression, 
ANOVA or ANCOVA, the means and slopes are 
estimated by finding their values that minimize 
the residuals. Actually, the sum of the squares of 
the residuals is minimized, and the mean of the 
residuals is always zero. What you end up with 
is the best-fitting or least-squares model. Fine, 
so what about ChildID in the model? Each resid-
ual is identified uniquely by ChildID: each level 
of ChildID occurs only once, and each level has 
a different residual. If you specify ChildID as a 
random effect, you are specifying the residual, 
which is forbidden with the random statement, 
because Proc Mixed has to estimate separate re-
siduals, and there's nothing left to estimate them 
(so you get weird values–try it and see).  

The residuals are not just a nuisance; they have 
a useful interpretation. For example, in the 
model VO2max=Sex, every boy (and every girl) 
has either a positive or a negative residual (no 
residual is ever exactly zero). A boy with a large 
positive residual has a VO2max that is much 
greater than the mean for the boys; a girl with a 
small negative residual has a VO2max that is a 
bit less than the mean for the girls; and so on. 
The residuals therefore represent relative indi-
vidual differences from the mean of the boys 
and from the mean of the girls. Furthermore, the 
standard deviation of the residuals, the root-
mean-square error (RMSE) in the language of 
ANOVA, is a single statistic representing the 
typical individual differences between boys (and 
between girls). In SAS, the scatter in the residu-
als is summarized as a variance, and you have to 



Hopkins: Fixed and random effects in SAS Page 10 

 Sportscience 26, 4-25, 2022 

take the square root to express the scatter as an 
SD. 
Groups of Residuals 

When you have two or more groups of sub-
jects, the residuals could show a different scatter 
in each group. In the example of boys and girls 
tested for VO2max once each, there might be a 
bigger range (more properly, a bigger scatter) of 
fitness among the girls than among the boys. In 
SAS, there is a simple way to allow for this pos-
sibility: 
repeated/group=Sex; 
Now you will see two residual variances in the 
results window, one for each level of Sex. Previ-
ously, repeated; (i.e., without anything else) 
was implicit in the random-effects model: the 
model produced only one residual variance.  

The repeated statement has been devised pre-
sumably to make it easier to deal with data that 
involve repeated measurement on subjects–more 
about this shortly. Meantime, think about re-
peated as a way of structuring the residuals, 
even when there is no repeated measurement. In 
fact, you can actually use the repeated statement 
to specify the residuals without getting into trou-
ble. In the present example, ChildID is a random 
effect representing the residuals, and SAS 
doesn't mind if you state… 
repeated ChildID; 
or… 
repeated ChildID*Sex; 
…for only one residual variance, or… 
repeated ChildID/group=Sex;  
or… 
repeated ChildID*Sex/group=Sex; 
…for two residual variances. 

The above simple mixed model with two re-
sidual variances is doing nothing more than esti-
mating and comparing the mean VO2max of the 
boys and girls. You could do that with the t-test 
procedure in SAS or even in a spreadsheet, but 
what kind of t test is it? The so-called unequal-
variances t test: the unequal variances are the 
variances of the residuals for the boys and for the 
girls. 

If you have AgeGroup and Sex in the fixed-
effects model, you specify a different residual 
variance for each age group with this statement: 
repeated/group=AgeGroup; 
Or specify six residual variances with this state-
ment: 
repeated/group=Sex*AgeGroup; 

As already noted, Proc Mixed provides a com-
parison of the means of the groups in several 

ways, but it does not provide a comparison of the 
SDs. Here the SDs are independent residuals, so 
expressed as variances, their ratios can be com-
pared in a pairwise fashion via the F statistic (the 
basis of the Levene test for homogeneity of var-
iance). I haven't provided any coding or spread-
sheet for such comparisons, but with even mod-
est sample sizes, residual SDs are approximately 
log-normally distributed; hence you can com-
pare their ratio with my spreadsheet Com-
bine/compare effects (Hopkins, 2006) via the tab 
for 2 groups or statistics. You will need to insert 
the smallest important difference in SDs, which 
is half that for differences in means (Smith & 
Hopkins, 2011), as a factor of the reference SD. 
Repeated Measurement 
04 Reliability 2 trials.sas 

Two (or more) measurements on the same 
subjects can be represented by a nominal varia-
ble such as Trial, with levels 1 and 2 (or 1st and 
2nd, or pre and post, or control and experi-
mental). Trial is, of course, a fixed effect, repre-
senting two clusters of measurements, and if you 
put it in the model, you can estimate the means 
for each trial and the change in the mean between 
the trials: 
model VO2max=Trial; 

ChildID now represents clusters of measure-
ments; if there are 10 children, then there are 10 
clusters, each cluster consisting of two observa-
tions. Hence ChildID now must be included in 
the model to account for the clustering. One way 
to include it would be as a fixed effect: 
model VO2max=Trial ChildID; 
The result would be a two-way ANOVA, with 
Trial and ChildID being the "two ways", and it's 
the traditional approach to a straightforward re-
liability analysis, as in my spreadsheets for reli-
ability. The residual provides the typical error of 
measurement. 

But ChildID is really a random effect, so it 
should be included with a random statement: 
random ChildID; 
Although it's stated separate from the fixed ef-
fects, it is still a nominal variable in the model, 
so it is represented by dummy variables, one for 
each child. Therefore, ChildID estimates a mean 
value for each child, but it's not the actual mean 
of the two trials for each child, it's a relative 
mean: the contribution that each child makes to 
the linear model, when the means for the two 
levels of trial have been accounted for with the 
fixed effect for Trial. You can see the individual 
values estimated for each child by requesting the 
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random-effect solution for ChildID… 
random ChildID/solution;  
…or simply… 
random ChildID/s; 

The solution shows values for each child as a 
positive or negative number, representing the ex-
tent to which each child has a mean above or be-
low the grand mean of the trials. The mean of the 
values of the random-effect solution is zero, just 
like the mean of the residuals is zero, and the 
scatter in the positive and negative values is 
summarized as a standard deviation representing 
typical differences between children averaged 
over the two trials. As with the residuals, the 
scatter is summarized as a variance, and you 
have to take the square root. 

I like to use what I call the hat metaphor to 
understand random effects. When a variable 
such as ChildID is a random effect, it's as if there 
is a hat containing an infinite number of pieces 
on paper, on each of which is written a unique 
name of a child and a unique numeric value for 
that child. When you perform a study, the ran-
dom sample of n kids is obtained by drawing n 
pieces of paper out of the hat. The mean of the 
infinite number of values in the hat is zero, and 
the SD of the values is the population value of 
the between-subject SD. The mixed model esti-
mates the value for each kid on the pieces of pa-
per in the sample, and the SD of the values is the 
sample SD. The metaphor is not perfect, because 
the mean of a random sample of values can never 
be zero, but the mixed model estimates the indi-
vidual values partly by making the mean of all 
the sample values zero. For a slideshow with a 
succinct summary of mixed modeling and ani-
mations illustrating the hat metaphor, follow this 
link. 

An alternative specification of random 
ChildID is as follows… 
random Intercept/subject=ChildID; 
…or simply… 
random Int/subject=ChildID; 

Why "Intercept"? Recall that for a nominal 
fixed effect, each level of the fixed effect repre-
sents an intercept in a simple linear regression. 
The same thing happens with a random effect: 
each level of the random effect (here, each level 
specified by subject=ChildID) is an intercept 
in a linear regression for each child. It's not the 
exact intercept, because the mean value for all 
the intercepts is zero. You have to add it to the 
fixed-effect intercept(s) to get the actual inter-
cept for each subject.  

Now that I have introduced the random state-
ment, I will introduce the concept of negative 
variance and negative SD. A variance is an SD 
squared, and the square of any number is always 
positive, even when the number is negative, yet 
you should almost always allow the variances 
estimated with the random statement to be nega-
tive. Why? Because the mixed model estimates 
the variances by partitioning the overall variance 
of the data (the grand SD squared) into various 
sources, identified with the random statement, 
with any remaining variance assigned to residu-
als. Now, imagine that the true differences be-
tween the kids in the preceding example is tiny; 
that is, the kids are effectively clones, and the 
observed differences between them are due al-
most entirely to error of measurement. You ex-
pect to get a very small positive variance for 
ChildID, sure, but what about its uncertainty? 
For that you need a sampling distribution for the 
variance to calculate the lower and upper confi-
dence limits. The residual variance always has a 
chi-squared distribution, and there are no prob-
lems with its confidence limits: the lower limit is 
always positive, and the upper limit is exactly 
what you would expect for a variance with what-
ever degrees of freedom (see below) are left over 
for the residual. If you use the chi-squared distri-
bution for the ChildID variance, you get an ap-
parently sensible lower confidence limit very 
close to zero, but the upper confidence limit is an 
impossibly large value. So, instead, you have to 
assume that the variance has a normal distribu-
tion, which automatically means that the lower 
limit can be negative, and in our example of a 
very small ChildID variance, it will be negative.  

You allow a normal distribution for the vari-
ance by telling Proc Mixed to allow negative 
variance, which you do by specifying nobound 
in the proc mixed statement. It will then allow 
negative variance not only for the lower confi-
dence limit, but also for the variance itself and 
for the upper confidence limit. The confidence 
interval now looks like a realistic range for the 
sampling uncertainty, whereas with the limits 
decided by the chi-squared distribution (i.e., al-
lowing only positive variance when you omit 
nobound), the confidence interval is unrealistic. 
What's more, if the true variance of ChildID in 
the population is tiny, then in nearly half of all 
studies you can expect to get a negative variance, 
simply because of sampling variation. But that's 
OK, the upper confidence limit will almost al-
ways be some sensible positive number that 
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properly estimates how different the kids really 
are from each other. Yes, except that you have to 
take the square root of the variance and its limits 
to get estimates of the SD and its limits, so what 
do you do about negative values? Change the 
sign to positive, take the square root, then call it 
a negative SD. No problem. Really. 

One more very important point about allowing 
negative variance… If you allow it, the estimate 
of the variance will be unbiased; that is, the esti-
mate on average will be the true value. If you 
don't allow it, then when SAS tries to estimate a 
negative value, it's not allowed to, so the esti-
mate is set to zero, so on average the estimate is 
biased high (you only ever see zeros or positive 
values, the average of which must exceed the 
true value). The bias is particularly bad when the 
true variance and its degrees of freedom are both 
small. 

Look, you will hardly ever get negative vari-
ance or a negative lower confidence limit for the 
random effect representing identity of subjects, 
so there's no harm done by allowing only posi-
tive variance for this random effect. Where it re-
ally matters is when the random effect is speci-
fied with a dummy variable to represent a small 
extra amount of variance, such as extra error on 
the first trial in a reliability study, or extra varia-
bility representing individual responses in a time 
series or controlled trial. Then it's possible for 
the variance to be truly negative, and you need 
to allow it–see later. 

But what about the residuals in this example 
of repeated measurement? They would be speci-
fied by the random effect ChildID*Trial, which 
uniquely identifies each observation in the da-
taset. An interaction of a random effect with any 
other variable is also a random effect, in this case 
the residual. You need to understand the interac-
tion that would represent the residual in an anal-
ysis, and equally you need to remember that you 
can't specify it with the random statement. The 
individual residual values now represent the ex-
tent to which each child's value in each trial dif-
fers from the overall mean for the given child in 
the given trial. The standard deviation of the re-
siduals is therefore a measure of within-subject 
variability from trial to trial. The fixed effect 
Trial and the random effect ChildID together 
represent a simple reliability model, with Trial 
providing an estimate of the change in the mean 
between trials (the habituation or learning effect) 
and with the SD of the residuals providing an es-
timate of the standard or typical error of 

measurement. The results of this analysis are 
practically identical with those of the two-way 
reliability ANOVA. 

But maybe such a simple reliability model 
does not apply to these data. Maybe the residual 
on the first trial is greater than that on the second 
trial; for example, the subjects may not be accus-
tomed or habituated to performing the test. In 
that case, you can specify a different residual 
variance for the different levels of Trial: 
random Int/subject=ChildID; 
repeated/group=Trial; 
parms 100 1 1; 

Note the parms statement. When I ran the 
analysis with a small sample size (20) without 
this statement, the program sometimes failed. 
More about this shortly.  

I'm always amazed that the mixed model can 
estimate differences between subjects with the 
random ChildID statement, along with different 
residuals for the two or more trials. Be warned, 
though: even if you can get it to work with a 
small sample size, there will be a lot of uncer-
tainty in the estimates of one or more of the var-
iances. The uncertainty is represented by stand-
ard errors and confidence limits, coming up after 
an explanation of… 
Failed Analyses 

When the analysis in the previous program 
failed, I got a  on the program tab. When I 
found the errors in the LOG window, they all re-
lated to trying to process an empty dataset. In 
other words, the mixed model did not run. I 
scrolled further back in the LOG window and 
found this for the proc mixed part of the pro-
gram: 
WARNING: Stopped because of infinite 
likelihood.  

This kind of problem can arise when the random-
effects model gets complicated, especially when 
you allow negative variance and/or have small 
sample sizes. How come?  

The mixed model works by an iterative pro-
cess, whereby it starts by guessing values for all 
the parameters in the model, then it evaluates the 
likelihood of the data, given those values, then it 
tweaks the values to increase the likelihood (i.e., 
decrease the unlikelihood), evaluates the likeli-
hood, tweaks the values, and so on, until the in-
crease in likelihood is tiny. Then it stops, shows 
this in the LOG… 
Convergence criteria met, 

…and gives you the results in the RESULTS 
window. But when it says "infinite likelihood", 
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it can't get started. In other words, the algorithm 
it uses to get starting values for the parameters 
didn't work. You have to help it by giving it rea-
sonable starting values for the random-effect and 
residual variances and covariances (covparms), 
which you do with the parms statement. One 
way to get starting values is to allow only posi-
tive variance (by removing nobound from the 
proc mixed statement), which usually solves the 
problem of infinite likelihood, and may explain 
why the creators of Proc Mixed didn't make neg-
ative variance the default. You then add a parms 
statement with the values for the covparms (ap-
proximately–to within a factor of 10), including 
any zeros, and turn on negative variance again 
before you re-run the program. Or you can leave 
negative variance turned on, guess sensible val-
ues for the SDs, square them, then include them 
in the parms statement. The order of the vari-
ances and covariances following parms is the or-
der specified in the random statement (with any 
covariances between the two variances), fol-
lowed by the residuals.  
Did not converge is another problem that 

can occur with complex random-effects models 
and small sample sizes. In this case, the iterative 
procedure could not reach a sufficiently tiny in-
crease in likelihood. The solution is to relax the 
convergence criteria by putting this term in the 
proc mixed statement: convh=1E-6 convf=1E-
6; (the default value is -8, so when you don't use 
this statement in the proc mixed statement, you 
are effectively specifying convh=1E-8 
convf=1E-8). If it still doesn't converge, try -5 
rather than -6. If it does converge, then try -4, 
check that the estimates for everything don't 
change to any important extent, then switch back 
to -5 and re-run the program to get the estimates. 
If the values of the estimates do change substan-
tially, you are sunk! You'll have to try simplify-
ing the model, or maybe there's a weird outlier 
in the data that needs to be removed. Viewing 
residuals vs predicted values is a great way to 
spot outliers, but if you have infinite likelihood, 
get the program to run with a simpler model first 
to generate the residuals and predicteds. 

I run the mixed model by suppressing all the 
results that Proc Mixed provides by default. I get 
the results I want by creating datasets of the re-
sults using options in Proc Mixed, then pro-
cessing and proc printing the datasets. Conse-
quently, if Proc Mixed doesn't work, but it had 
worked previously, the RESULTS window will 
show the results from the previous analysis, and 

you may think that Proc Mixed has worked, es-
pecially if the program tab doesn't show  to in-
dicate errors. I avoid this problem by clearing all 
the datasets arising from any previous analysis 
with a data step just before the proc mixed step. 
Standard Errors 

The estimates of variances in a mixed model 
are sample statistics, so they have sampling un-
certainty, which represents how much they are 
expected to change between studies of the same 
size and sampling method. The sampling uncer-
tainty is estimated as a standard error (SE), 
which is the expected typical variation in the sta-
tistic, if the study were repeated again and again. 
For the residuals, the SE of the variance comes 
from a chi-squared distributions, and for vari-
ances specified with the random statement, the 
standard errors come from a normal distribution 
or a chi-squared distribution, with or without 
nobound, respectively. 

Standard errors of a chi-squared distribution 
are specified by a single parameter, degrees of 
freedom (DF), which is the number of independ-
ent bits of information that contribute to calcula-
tion of a standard deviation or variance. For this 
reason, I like to see the degrees of freedom, but 
SAS doesn't provide it, so I have to calculate it 
from the SE, which SAS does provide. The SE 
of the variance from the chi-squared distribution 
is a factor SE of 1/√(2DF); that is, the SE of the 
variance in the units of the variance is Vari-
ance*(1/√(2DF). Hence DF=2(Variance/SE)2. 
SAS also provides Variance/SE as the Zvalue, 
the normal-distribution equivalent of the t value, 
which is kind-of weird, because the residual var-
iances are not normally distributed. But that's 
OK, just go ahead and estimate degrees of free-
dom with 2*Zvalue**2 in a data step. The value 
you get with simple models is what you expect 
from first principles. I use the same formula to 
generate the degrees of freedom for the random 
effect variances, which is also kind-of weird, be-
cause I am assuming they are normally distrib-
uted with nobound. But again, that's OK, be-
cause I am seeing the degrees of freedom of the 
random-effect variances, if they were chi-
squared distributed, and the value does represent 
the amount of information in the variance. The 
mixed model also provides standard errors for 
the fixed effects, using the residuals and random 
effects, and the sampling distributions for fixed 
effects are always t distributions. 

The standard errors and sampling distribution 
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are used to calculate confidence limits, which 
you should present for most effects and some 
SDs. There are several approaches to then inter-
preting the sampling uncertainty represented by 
the confidence limits or the sampling distribu-
tion, as indicated in the Introduction. 
Repeated Measurement with Dummy 
Variables 
04 Reliability 2 trials.sas 
05 Reliability 3 trials.sas 
06 Time series.sas 

In the previous model, instead of specifying a 
different residual variance on each trial, it's pos-
sible to specify the same residual on each trial 
and extra error variance on one or more trials us-
ing one or more dummy variables. In the case of 
a simple reliability study with two trials, where 
you expect extra error on the first trial, you spec-
ify extra error on the first trial. First, define a 
dummy variable with a suitable name in a data 
step before the proc mixed step: 
data dat2; 
set dat1; 
XvarTrial1=0; *dummy variable to 
estimate extra error on Trial 1; 

if Trial=1 then XvarTrial1=1; 
The fixed-effects model is the same as before: 

model VO2max=Trial; 
The random-effects model is this… 

random ChildID XvarTrial1*ChildID; 
…or this… 
random Int XvarTrial1/subject=ChildID; 
…because… 
random Whatever/subject=SubjectID 
…means the same as… 
random Whatever*SubjectID 
…but not when type=un; more on this soon. 

The term XvarTrial1*ChildID represents 
something only on the first trial, because it's zero 
on the second trial. And on the first trial, it rep-
resents a random effect, just like ChildID, so 
SAS estimates a value for every child, additional 
to the value it is already estimating for random 
ChildID: there's a hat labeled ChildID, and an-
other hat labeled XvarTrial1*ChildID; every 
child gets a number out of the ChildID hat, and 
every child gets a number out of the Xvar-
Trial1*ChildID hat when it's the child's first 
trial. In other words, every child gets an addi-
tional random error on the first trial. There is still 
the residual variance, but we don't state it with a 
repeated, because we want the same residual 
variance on Trial 1 and Trial 2. The analysis is 
equivalent to estimating a separate residual on 

Trial 1 and Trial 2, with the residual variance for 
Trial 1 given by adding together the variance for 
XvarTrial1*ChildID and the residual variance. 
So as before, you need a big sample size for this 
analysis to work well, when there are only two 
trials. But with three trials, if you assume the 
same residual variance on Trials 2 and 3, the 
analysis works OK with 10 or so subjects. (That 
doesn't mean that only 10 or so subjects are 
enough!) 

Instead of representing a reliability study, the 
two trials could represent a time series, in which 
measurements are taken before and during or af-
ter an intervention. In this case, you would 
make a dummy variable for the second trial, rep-
resenting extra variability arising from individ-
ual responses to the intervention. The random-
effect solution for the dummy are the values of 
the individual responses (around the mean, pro-
vided by the fixed effect Trial), and the SD for 
the dummy summarizes the individual responses 
as typical between-subject differences around 
the mean effect of the intervention. 

With three or more trials, the data could repre-
sent a time series in which you take a baseline 
measurement (Trial 1), then do an intervention 
and see what happens at later time points (Trial 
2, 3, and so on). Let's limit it to three trials. You 
can expect individual responses in Trials 2 and 
3, but the responses may differ between the trials 
and yet be correlated: subjects who start to re-
spond well in Trial 2 may respond even more in 
Trial 3; subjects who don't respond well in Trial 
2 may not respond well in Trial 3; and so on for 
different subjects. Dummy variables now allow 
you to model such correlated individual re-
sponses. What you need is a dummy variable 
that will estimate the same individual response 
on both trials for a given subject, a dummy vari-
able that will estimate the extra individual re-
sponse in Trial 2, and another dummy variable 
that will estimate the extra individual response 
in Trial 3. Here is the data step to create the 
dummy variables: 
data dat2; 
set dat1; 
XvarTrial23=0; *dummy variable to 
estimate extra variance shared by 
Trial 2 and 3; 

if Trial=2 or Trial=3 then 
XvarTrial23=1; 

XvarTrial2=0; *dummy variable to 
estimate extra variance on Trial 2; 

if Trial=2 then XvarTrial2=1; 
XvarTrial3=0; *dummy variable to 
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estimate extra variance on Trial 3; 
if Trial=3 then XvarTrial3=1; 

And here is the random statement to estimate 
the extra variances: 
random Int XvarTrial2 XvarTrial23 
XvarTrial3/subject-ChildID; 
To get the actual individual responses on Trial 

2, you have to add the variance for XvarTrial2 to 
the variance for XvarTrial23 (and then take the 
square root); to get the actual individual re-
sponses on Trial 3, you have to add the variance 
for XvarTrial3 to the variance for XvarTrial23 
(and then take the square root). Calculating the 
SEs for combined variances is complicated. 

Once again, you need a big sample size to get 
adequate precision, and the analysis will some-
times fail with a small sample size (e.g., 10). It's 
much better if you include a control group in 
which you assume there are no individual re-
sponses. See later. 

There is a more elegant way to estimate the in-
dividual responses, using a random statement 
with type=un. But first I will introduce the use 
of type=un with the repeated statement. 
Repeated Measurement with Type=un 
04 Reliability 2 trials.sas 
05 Reliability 3 trials.sas 
06 Time series.sas 

Consider again the reliability model with only 
two trials. The random-effects model, consisting 
of a between-subject variance (specified with 
random ChildID) and different residual vari-
ances in the two trials (specified with re-
peated/group=Trial) can be specified another 
way, using just the repeated statement to repre-
sent the repeated measurements: 
repeated Trial/subject=ChildID 
type=un; 

Let's unpack this statement bit by bit. 
First, repeated Trial is easy enough: the 

levels of Trial represent repeated measurements. 
But repeated measurements on whom? The kids 
of course, so we have to state sub-
ject=ChildID. But if that's all we had in the 
statement, it's the equivalent of repeated 
Trial*ChildID, which specifies a residual that 
changes for every observation (every observa-
tion is uniquely identified by a level of Trial and 
a level of ChildID). It's as if the second trial con-
sists of different kids, so the analysis is just like 
having Sex instead of Trial: we've lost the sense 
of repeated measurement, and there is only one 
residual variance.  

We therefore need something extra to tell SAS 

that we have indeed got repeated measurement, 
and that we want to account for differences be-
tween kids (which we got previously with ran-
dom ChildID) as well as a different residual er-
ror of measurement on each trial (which we got 
previously with repeated/group=Trial). The 
something extra is type=un: the type= stands 
for the type of random-effect structure you want, 
and the un is short for unstructured, which is a 
complete misnomer, because what it specifies is 
the most general or complicated structure of all, 
as follows…  
Type=un instructs SAS to estimate a different 

value for each subject on Trial 1 and a different 
value for each subject on Trial 2, but allowing 
for the possibility that the set of values in Trial1 
are correlated with the set of values in Trial 2. 
They are indeed correlated, because kids with a 
high, low or moderate value of VO2max overall 
will tend to have a high, low or moderate value 
on Trial 1 and Trial 2. The correlation is ac-
counted for with an estimate of covariance, 
which measures the extent to which the two var-
iances have a shared or common variance. The 
shared variance represents the true differences 
between the kids, the difference that was esti-
mated previously with random ChildID: If you 
add that shared variance to the residual variance 
on Trial 1 or Trial 2 (estimated previously with 
repeated/group=Trial), you get the observed 
variance on Trial 1 or Trial 2. The variances that 
SAS produces for random effects with the re-
peated or random statements are called covari-
ance parameters (covparms, for short), because 
in general, random effects can represent not just 
variances but also covariances, when the random 
effects are correlated.  

The repeated Trial statement tells Proc 
Mixed how to estimate residuals. In the absence 
of any specified random effects, the residuals are 
just the difference between the observed values 
and the mean values predicted by the fixed ef-
fects. So, the residuals are bigger with this ap-
proach than with a random statement that esti-
mates differences between subjects. But the cor-
relation between the residuals specified with 
subject=ChildID type=un properly accounts 
for the within-subject variability in the data and 
gives the right answers for the fixed effects. (For 
more on the difference between repeated and 
random, visit this link.) 

Unfortunately, using repeated in this manner 
does not produce estimates of the usual typical-
error variances or individual-response variances: 

https://www.theanalysisfactor.com/repeated-and-random-2/
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all you see is the variance in the two trials, and 
the covariance, so you have to subtract the co-
variance from the variances to see how much er-
ror there is on each trial. The variances and co-
variance are not labeled with the levels of Trial, 
but are instead labeled UN(1,1), UN(2,1) and 
UN(2,2), representing respectively the variance 
for Trial 1, the covariance, and the variance for 
Trial 2. Furthermore, SAS does not produce a 
random-effect solution for the covariance, so 
you can't see which kids are fitter than average 
and which kids are less fit.  

So why bother with this repeated approach? 
For researchers interested only in fixed effects 
with repeated measurement, it's an easy way to 
account fully for all the potentially correlated 
sources of variability, especially in a controlled 
trial with three or more levels for Trial or clus-
tered repeated measurements. And it always 
works, and it's fast with big sample sizes. But re-
searchers should be interested in sources of error 
in reliability studies, in individual responses in 
interventions, and in the error of measurement in 
the interventions to check on the reliability of the 
dependent variable. For these you need dummy 
variables, as we've already seen.  

Now let's return to the time series with three 
trials. Here's an elegant way to specify and esti-
mate correlated individual responses on Trials 2 
and 3… 
random Int/subject=ChildID; 
random XvarTrial2 XvarTrial3 
/subject=ChildID type=un; 
The first random statement estimates the dif-

ferences between the kids. The second random 
statement draws a number out of a hat labeled 
XvarTrial2*ChildID for every child, represent-
ing the individual responses to Trial 2, and 
there's another hat for Trial 3, while the type=un 
estimates their covariance (the individual re-
sponses shared between the trials). So, with this 
syntax, the covariance has already been added to 
the extra individual responses on the two trials. 
Note that if you omitted type=un, you would get 
estimates of individual responses on the two tri-
als, but SAS would assume they were independ-
ent, which is not correct, so the estimates of eve-
rything would change to some extent and would 
be untrustworthy. Note also that when you have 
type=un, you must use the subject= syntax.  

This is a good opportunity to mention other 
type= covariance structures that are used with 
subject=. When you don't want the random ef-
fects to be correlated, the type of structure is 

called variance components, and it is requested 
with type=vc. In fact, type=vc is the default and 
doesn't need to be stated. So, to be clear… 
random XvarTrial2 
XvarTrial3/subject=ChildID type=vc; 

…is the same as… 
random XvarTrial2 
XvarTrial3/subject=ChildID; 
I guess the reasoning behind this obscure des-

ignation is that there is variability in the data, and 
you want to partition the variability into different 
uncorrelated components.  

There are many other types of covariance 
structure, but the only one I have used (very 
rarely) is called spatial covariance. It's easiest 
to understand with the repeated statement. Im-
agine you had many repeated measurements of 
Trial on each child. With… 
repeated Trial/subject=ChildID 
type=un; 

 …you are specifying the most general covari-
ance matrix, with different variances on every 
trial and different covariances between every 
pair of trials. But with longer time between pairs 
of trials, it's possible that the covariances will be 
smaller, or to put it another way, the correlations 
between trials close together may be high, and 
the further apart the trials, the lower the correla-
tion. This scenario would arise if the kids 
changed gradually with time, and they differed 
in their rates of change. This scenario also cap-
tures the notion that reliability is generally 
lower, the longer the time between trials. Well, 
fair enough, but I have not found spatial covari-
ance models to be useful when dealing with ath-
letes over extended periods. Instead, I allow for 
one residual error variance within a season or 
over a short period of time, and an additional 
source of within-athlete variability between sea-
sons or between blocks of measurements sepa-
rated by longer periods of time, to represent the 
possibility that some athletes get relatively better 
or worse between seasons or blocks. Of course, 
if relevant, a fixed effect for a gradual change 
over time can be included (estimated as a slope), 
and a random effect can be included to specify 
individual differences in the changes (an SD for 
the slope). That's coming up shortly, in the guise 
of random slopes and intercepts. When you ac-
count for individual differences in gradual 
changes in this manner, there is less, if any, need 
for a spatial covariance structure.  

Here is another way to specify correlated indi-
vidual responses on Trials 2 and 3. I'll leave you 
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to figure it out: 
random Int/subject=ChildID; 
random XvarTrial23*Trial 
/subject=ChildID type=un; 

It produces a slightly different covariance table, 
with zeros for the variances and covariances in-
volving Trial 1. Surprisingly, the estimates differ 
slightly from those of the previous model. They 
are both right, but this model produces less un-
certainty for the residual variance with small 
sample sizes (and sometimes the previous model 
won't estimate a standard error for the residual). 
I don't know why. 
Groups of Random Effects 
07 Reliability 2 trials+sex.sas 

Let's now add Sex to a dataset consisting of 
repeated measurement; for example, values of 
VO2max of children (ChildID) tested twice 
(Trial). The fixed-effect model that allows for 
means of boys and girls to differ on each trial is 
this… 
model VO2max=Sex Trial Sex*Trial; 
…or this… 
model VO2max=Sex*Trial; 

Previously the following random-effects 
model estimated an SD representing differences 
between the children and a residual SD repre-
senting variability within each child between tri-
als: 
random ChildID; 

But boys and girls are different creatures. Ob-
viously, the mean for boys could differ substan-
tially from the mean for girls, but the SD for boys 
could be different, too: there might be more scat-
ter in the values for girls than for boys, for ex-
ample. SAS allows you to specify this possibil-
ity: 
random ChildID/group=Sex; 

The analysis will now produce a variance for 
boys and a variance for girls; take the square root 
and you will get the two SDs. Take advantage of 
the assumed normal distribution of the variances 
to compare them inferentially with the spread-
sheet Combine/compare effects (Hopkins, 2006) 
via the tab for 2 groups or statistics (for which 
you will need the square of the smallest im-
portant SD). Alternatively, run the analysis to 
see which SD is greater, then create a dummy 
variable for that group (e.g., XvarGirls) and es-
timate its variance by adding it to the random 
statement: 
random Int XvarGirls/subject=ChildID; 
With this approach (not shown in the simula-

tion), use the tab for 1 or more groups or statis-
tics to evaluate the magnitude of the variance in-
ferentially.  

Don't forget to allow for different residuals for 
the boys and girls with… 
repeated/group=Sex; 
…which is based on the assumption of a residual 
error for the boys that is the same in Trials 1 and 
2, and a different residual error for the girls that 
is the same in Trials 1 and 2. If you want to allow 
for a different residual error in each trial that is 
the same for each sex, use this… 
repeated/group=Trial; 
…or this, if you want to allow for a different re-
sidual in each trial and sex… 
repeated/group=Sex*Trial; 
…but you need a big sample size for the analysis 
to run properly. The following statement, with-
out random ChildID in the model, will run 
much more quickly and achieve the same results 
for the fixed effects, but it will leave you in the 
dark about errors of measurement (previously 
given by the residuals) and the individual differ-
ences between kids (previously given by the ran-
dom-effect solution for ChildID): 
repeated Trial/subject=ChildID type=un 
group=Sex; 

Controlled Trial with Two Trials 
08 Controlled trial 2 trials.sas 

The previous model, with boys and girls tested 
twice, becomes a controlled trial, if we change 
Sex (with levels boy, girl) to Treat (with levels 
control, exptal). The fixed-effects model is: 
model VO2max=Treat*Trial; 
(There is no point in specifying the main effects 
for Treat and Trial in a controlled trial, because 
the overall means for Treat and the overall 
means for Trial have no useful interpretations.) 

For the random-effects model, we want to 
specify individual responses on the second trial 
in the experimental group. To do that, we need a 
previous data step: 
data dat2; 
set dat1; 
XvarExpTrial2=0; *individual responses 
in exptal group; 

if Treat="exptal" and Trial=2 then 
XvarExpTrial2=1; 
Let's jump straight to the most parsimonious 

and informative random-effects model: 
random Int XvarExpTrial2 
/subject=ChildID type=un group=Treat; 

parms 100 0 0  100 0 5  10; 
The Int specifies the ChildID clusters and 

thereby estimates each kid's true mean value. 
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The XvarExpTrial2 specifies a randomly chosen 
value for each kid in the experimental group on 
the second trial, thereby specifying the individ-
ual responses.  

The type=un allows for the individual re-
sponses (XvarExpTrial2) to be correlated with 
the subject's true value (Int). For example, in a 
study of the effect of a new kind of training on 
performance, athletes with higher true values of 
performance might have less headroom to im-
prove, or their existing training might include el-
ements of the new training, so they may experi-
ence a smaller effect; in this example, the covar-
iance specified by type=un will be negative. The 
covariance is converted to a slope representing 
the individual response per unit of true value by 
dividing it by the true variance (Int), and its con-
fidence limits have to be derived by parametric 
bootstrapping (as shown in the program: the 
standard errors of the numerator and denomina-
tor are used to generate the bootstrapped sam-
ples). 

The group=Treat allows for different random 
effects in the two groups. The model works with-
out this term, but including it makes the random-
effect solution easier to interpret. 

Note the parms statement: it's needed here to 
ensure the analysis works with small sample 
sizes. There's no repeated statement, so this 
model estimates a single residual variance repre-
senting the same error of measurement in both 
groups. We can make that assumption, because 
the kids were randomized or assigned to the two 
groups to make the groups as equal as possible. 

It's possible to estimate additional error on the 
first trial (e.g., arising from habituation), but you 
need a large sample size for the model to work 
properly and give reasonable uncertainties in the 
random effect. If there is such error in the data, 
the above model incorporates it into the residual 
and still produces good estimates of the individ-
ual responses.  

This model assumes zero individual responses 
to the control treatment. If there are such re-
sponses, this model appears to do a good job at 
estimating the individual responses in the exper-
imental group additional to whatever is in the 
control group. You could include an extra ran-
dom effect to estimate individual responses in 
the control group, but the covariances get com-
plicated, and again, you would need a large sam-
ple size. 

Finally, if all you care about is the fixed ef-
fects, then the following random-effects model 

will work with small sample sizes, it runs very 
quickly, and it allows for individual responses in 
both groups and different errors of measurement 
in both groups, but it won't estimate them: 
repeated Trial/subject=ChildID type=un 
group=Treat; 

The estimates and uncertainty for the fixed-ef-
fects with this model are almost exactly the same 
as with the previous model. 
Controlled Trial with Three Trials 
09 Controlled trial 3 trials.sas 

With three trials, you could have two baseline 
trials and one intervention trial, in which case 
you might allow for extra error in the first base-
line trial (due to familiarization), and for extra 
error in the intervention trial in the experimental 
group (due to individual responses). But let's in-
stead have one baseline and two intervention tri-
als, with extra error in the first trial for familiar-
ization, and extra error in the second and third 
trials for the experimental group, but allowing 
for correlated individual responses on those tri-
als. The correlation would arise through each 
subject in the experimental group having an in-
dividual response that is shared (i.e., is the same) 
for Trials 2 and 3, with something extra for Trial 
2 and something extra for Trial 3. These three 
errors are independent of each other, and that's 
how the data are simulated. I have also simulated 
an additional shared component of individual re-
sponses correlated with the subjects' true value, 
as in the controlled trial with two trials.  

The total shared component of individual re-
sponses is estimated as the covariance between 
the individual responses on Trials 2 and 3. Here 
is the data step to create dummy variables to es-
timate the various components of variability, in-
cluding extra error on Trial 1 arising from famil-
iarization: 
data dat2; 
set dat1; 
XvarTrial1=0; 
if Trial=1 then XvarTrial1=1; 
XvarExpTrial2=0; *indiv responses in 
exptal group on Trial 2; 

if Treat="exptal" and Trial=2 then 
XvarExpTrial2=1; 

XvarExpTrial3=0; *indiv responses in 
exptal group on Trial 3; 

if Treat="exptal" and Trial=3 then 
XvarExpTrial3=1; 
The fixed-effects model is of course this: 

model VO2max=Treat*Trial; 
Here is the random-effects model that ac-

counts for extra error on the first trial in both 
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groups, and individual responses in the second 
and third trial in the experimental group: 
random XvarTrial1/subject=ChildID; 
random Int XvarExpTrial2 XvarExpTrial3 
/subject=ChildID type=un group=Treat; 

parms 5  100 0 0  0 0 0  100 5 5   
5 5 5  5; 
The first random statement estimates the addi-

tional error on Trial 1, which it is now possible 
to estimate with a modest sample size. The sec-
ond random statement estimates the subjects' 
true values (Int) and the individual responses on 
Trials 2 and 3 (XvarExpTrial2, XvarExpTrial3). 
The type=un estimates three covariances repre-
senting the modifying effect of Int on Trial 2, the 
modifying effect of Int on Trial 3, and the indi-
vidual responses shared between Trials 2 and 3. 
The modifying effects of Int are subsequently 
expressed as slopes, with confidence limits gen-
erated by bootstrapping, as described in the pre-
vious section. The group=Treat produces one 
lot of covparms for the control group and another 
lot for the experimental group. All but one of the 
covparms in the control group are zero, because 
of the way XvarExpTrial2 and XvarExpTrial3 
are defined, hence the values shown for the 
parms statement. You will have to run the simu-
lation and view the program and results to see 
how the unstructured labels are reassigned 
meaningful names. 

I'm really sorry that the random-effects model 
has become so complicated. In practice, you will 
probably have a sample size that is too small to 
get adequate precision for the SDs representing 
individual responses anyway, so focus on only 
the fixed effects by running this repeated state-
ment: 
repeated Trial/subject=ChildID type=un 
group=Treat; 
You can still deal with individual responses by 

estimating the extent to which the treatment ef-
fect is modified by a subject characteristic. If the 
characteristic is X, say, then the full fixed-effect 
model is: 
model VO2max=Treat*Trial 
Treat*Trial*X; 

Use estimate statements to determine the mod-
ifying effect of one unit of X and/or 2 SD of X 
in all the Treat*Trial groups and their differ-
ences, the most important being exptal minus 
control for post minus pre. I have not provided a 
simulation for this analysis. 

Unfortunately, you can't include the baseline 
value of the dependent variable as a modifier, be-

cause it's already in the model as one of the val-
ues on the left-hand side of the equals sign. Of 
course, you are already estimating the modifying 
effect of true score via the covparms, but you can 
instead use the baseline as a modifier in a simpler 
model: analysis of… 
Controlled Trials via Change Scores 
10 Controlled trial via change scores.sas 

In a controlled trial, it's important not only to 
quantify individual responses to the treatment 
but also to determine the extent to which any in-
dividual responses are explained by one or more 
subject characteristics. The easiest way to see if 
a subject characteristic modifies a treatment is to 
plot the changes in the dependent variable 
against the subject characteristic. An analysis of 
change scores reproduces what you see in the 
scatter plot. 

One of the most important characteristics is 
the subject's true value of the dependent variable 
before the intervention: as explained in the pre-
vious sections, subjects with a high value might 
experience less effect from an intervention. 
When analyzing change scores, the true value 
can't be estimated from the random-effects 
model, so the observed baseline (pre-interven-
tion) value is used as a fixed-effect modifier.  

With baseline as the modifier, you will often 
see a negative slope in the plot of change scores 
vs baseline. This negative slope arises from re-
gression to the mean, and it becomes noticeable 
when the measure is "noisy" (error of measure-
ment is comparable to the between-subject SD): 
a baseline score that is lower (or higher) than av-
erage is at least partly due to random error of 
measurement being negative (or positive), so 
scores will on average increase (decrease) on re-
test. In a controlled trial, both groups will show 
regression to the mean, but any real modifying 
effect of baseline will be apparent as different 
slopes in the two groups, so the difference in the 
slopes (exptal minus control) is what you want. 

Here's the code to produce change scores for 
two post tests (Trial 2 and 3) and to make the 
baseline scores available for the post tests. The 
data need to have been sorted by ChildID Treat 
Trial (in the simulation they are generated in that 
sort order): 
data dat2; 
set dat1; 
retain Baseline; 
if Trial=1 then Baseline=VO2max; 
DeltaVO2max=VO2max-Baseline; 

The value of Baseline is the value of observed 
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performance in Trial 1, and retain keeps the 
value available for Trials 2 and 3. The observa-
tion for Trial 1 (change score = 0) is subse-
quently deleted. In the simulation program, the 
change scores for Trials 2 and 3 are analyzed 
separately, "by Trial". The fixed-effect model is 
simply… 
model DeltaVO2max=Treat 
Treat*Baseline; 

…where DeltaVO2max is the post minus the pre 
value, Treat has values control and exptal and 
estimates two means, Baseline is the pre-test 
value of VO2max, and Treat*Baseline estimates 
two slopes. Estimate statements provide the ef-
fects of Treat in the two groups, the slopes due 
to Baseline in the two groups, and the differences 
between the groups. The estimate statements 
for Treat are simplified by having a preceding 
proc standard, in which the grand mean of 
Baseline is rescaled to zero; the SD can also be 
rescaled to 0.5, to estimate the modifying effect 
of 2 SD of Baseline with unity coefficients in the 
estimate statements. 

The random-effects model is this simple… 
random XvarExp/subject=ChildID; 
…where XvarExp is a dummy variable with val-
ues 0 in the control and 1 in the experimental 
group. Its SD summarizes the individual re-
sponses. There is no random Int, because there 
is only one observation per subject.  

The magnitude of the residual SD depends on 
the magnitude of the standard or typical error of 
measurement relative to the SD representing true 
differences between subjects. If the error is much 
less than the SD, the residual will approach √2 
times the error of measurement, because it rep-
resents residual variability of change scores. If 
the error is much more than the SD, the residual 
will approach the error of measurement, because 
the baseline fixed effect will account for regres-
sion to the mean.  

This approach to individual responses using 
change scores with a baseline effect modifier has 
the advantage of being simpler and more visual 
than the approach using original scores. With 
noisy measures (typical error comparable to the 
true SD), the estimates of fixed effects also have 
somewhat better precision. Unfortunately, the 
noise attenuates the modifying effect of baseline; 
that is, the slope on average is smaller in magni-
tude than the true slope (although it correctly es-
timates the effect of the observed value in Trial 
1). Furthermore, the estimate of the SD repre-
senting individual responses can't be interpreted 

as such, when the measure is noisy and there is a 
substantial contribution of baseline to the indi-
vidual responses, because that contribution is not 
completely removed by the baseline covariate. 

In stats text books or sites, you may see one 
other approach to account for a modifying effect 
of baseline, using original scores rather than 
change scores: simply replace DeltaVO2max 
with VO2max in the above fixed-effects model. 
All the results are the same, except that the 
slopes representing the modifying effect of 
Baseline in the two groups are close to 1.0, re-
gression to the mean is evident as slopes less 
than 1.0, and you can't easily see the modifying 
effect of baseline on the change scores. The 
modifying effects of any other subject character-
istic included in the model are also hard to visu-
alize. I don't recommend this approach.  

So what's it to be: analysis of raw scores with 
unstructured random-effects models, or analysis 
of change scores with a baseline covariate? The 
former gives unbiased estimates of everything, 
but it needs a large sample size for adequate pre-
cision of the individual-response SDs. The latter 
gives better precision but biased estimates of the 
modifying effect of baseline and individual re-
sponses. If your sample size is small, go with 
change scores, especially for the modifying ef-
fects of other subject characteristics. 

One final note on controlled trials…I used to 
think that the change scores in Trials 2 and 3 
could be analyzed with a single mixed model 
that accounted for shared individual responses in 
the two trials. In studying the simulations, I real-
ized that the shared individual responses are con-
taminated by error of measurement on Trial 1 be-
ing carried through into the change scores on 
Trials 2 and 3. The contamination can be re-
moved with a subject-identity random effect, but 
that also removes the individual responses 
shared by Trials 2 and 3. The analysis still pro-
duces unbiased estimates of mean changes and 
unbiased estimates of modifying effects of other 
subject characteristics, but on balance I decided 
against providing the code for such analyses. 
Just analyze change scores "by Trial", as shown 
in the simulation. 
Random Effects with Multiple Clusters 
11a Reliability 3x2 trials.sas 
11b Time series 3x2 trials.sas 
11c Time series 3 trials+repeats.sas 

I stated earlier that you need to identify all the 
clusters in your dataset, so let's consider the clus-
ters when measurements are repeated on subjects 
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on more than one occasion. For example, imag-
ine each child is measured three times on one oc-
casion in the first week of a study, then three 
times on a second occasion a week later. Now 
you have another nominal variable Occasion, 
with two levels (Week1, Week2). Occasion is a 
nominal fixed effect. If the kids are of only one 
sex, the full fixed effect model is specified in 
SAS as: 
model VO2max=Occasion Trial 
Occasion*Trial; 

Occasion*Trial allows for and estimates the pos-
sibility that all six means (two occasions times 
three trials) are different from each other. Occa-
sion estimates the extent to which the mean 
VO2max changes between the two testing occa-
sions (on average, the kids might improve be-
tween occasions, for example). Trial estimates 
the extent to which the mean for Trial changes 
between the three trials on both testing occa-
sions.  

What about the clusters involving ChildID? 
There are six measurements on each child, or to 
be more precise, up to six measurements, be-
cause mixed modeling allows missing values. 
There are three different types of clusters of re-
peated measurements, represented by ChildID, 
ChildID*Occasion, and ChildID*Trial. (The in-
teraction ChildID*Occasion*Trial uniquely 
identifies each observation; hence it does not 
represent clusters, and it is in fact the residual.) 
The ChildID clusters represent the relative mean 
of each child, where the mean is taken over all 
repeated measurements: some children had high 
VO2max values across all six measurements, 
some had low values. The Child*Occasion clus-
ters represent the relative mean of each child, 
where the mean is taken over the three trials on 
each occasion: some children did well on the 
first occasion but less well on the second. The 
Child*Trial clusters represent the relative mean 
of each child, where the mean is taken over the 
two occasions for each trial: the kids differed in 
the extent to which they changed between the 
three trials (for example, the pattern of fatigue 
across the three trials differed between kids). In 
principle, we should include all three clusters in 
the analysis as their corresponding random ef-
fects: 
random ChildID ChildID*Occasion 
ChildID*Trial; 

Or we can use this notation: 
random Int Occasion Trial 
/subject=ChildID; 

I am happy that Occasion in the above model 
estimates extra error over the longer time period 
(and that each child has a different value on both 
occasions). But Trial represents only one "hat" 
for each trial on both occasions: for a given 
child, you take a number out of the hat for Trial 
1, and it's the same number for both occasions, 
and the SD is the same for each trial. That struc-
ture may be too complex or too simple.  

So, the decision about how to include clusters 
of repeated measurements as random effects de-
pends on what you think is going on. If individ-
ual differences in the pattern of means between 
trials is not an issue, a simple reliability model 
would be this: 
random Int Occasion/subject=SubjectID; 
Int gives the real differences between subjects, 
Occasion gives the within-subject between-oc-
casions variability, and the residual gives the 
typical error between trials (the same for each 
trial on both occasions). At the other extreme, 
when you are interested only in the fixed effects, 
the following model allows for the most general 
random-effects structure… 
repeated Occasion*Trial 
/subject=ChildID type=un; 

…but as before, Proc Mixed provides subject 
variances for each level of Occasion*Trial and 
pairwise covariances between the levels, so you 
can't disentangle the sources of variability and 
error. 

In the simulation 11a Reliability 3x2 trials.sas, 
there is no intervention, so the mean would 
change only a bit between trials; I have made a 
small positive mean change after Trial 1, but if it 
really was a VO2max test repeated on the same 
day, the kids would probably show fatigue in the 
second trial and even more in the third trial. I 
have assumed that there is extra familiarization 
error on the first trial regardless of occasion, so 
for each child, a number comes out of a hat for 
the first trial on the first occasion and a number 
comes out of that hat again on the second occa-
sion. There is also a hat for Occasion, as de-
scribed, and obviously a hat for ChildID. The re-
sidual hat represents the typical error in all six 
trials, after the extra error on Trial 1 and the 
within-child between-occasions error have been 
estimated. Here is the random-effects model: 
random Int XvarTrial1*Occasion 
Occasion/subject=SubjectID; 

Int estimates the true between-child SD, Xvar-
Trial1*Occasion estimates the extra error on 
Trial 1, and Occasion estimates the within-child 
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variability between occasions. If instead of 
XvarTrial1*Occasion, you made it simply Xvar-
Trial1, you would be estimating individual dif-
ferences in familiarization that are consistent be-
tween occasions: a kid who does better on Trial 
1 on the first occasion does better on Trial 1 on 
the second occasion. I think it's safer to go with 
XvarTrial1*Occasion. 

In the simulation 11b Time series 3x2 tri-
als.sas, I have imagined that there is an acutely 
ergogenic treatment after Trial 1, such as caf-
feine, producing an increase in the mean on Trial 
2 and a further increase on Trial 3. The fixed-
effects model is the same as above. I have as-
sumed the same individual responses to the treat-
ment on both occasions, so for each child, a num-
ber comes out of each of three hats: Trial 2, Trial 
3, and Trial 2&3 (the individual response shared 
between Trials 2 and 3), and those numbers are 
applied to Occasion 1 and Occasion 2. I have 
also simulated a modifying effect of the kids' 
true scores on part of the shared individual re-
sponses, in the same manner as for the controlled 
trials. Here's the random-effects model that cap-
tures that error structure: 
random XvarTrial1*Occasion Occasion 
/subject=SubjectID; 

random Int XvarTrial2 XvarTrial3 
/subject=SubjectID type=un; 

parms 5 5  100 5 5  5 5 5  5; 
The first random statement is the same as for the 
reliability analysis, allowing for extra error on 
Trial 1 and within-child variability between oc-
casions. The second random statement gives the 
modifying effect of true score on the individual 
responses in Trials 2 and 3, and correlated indi-
vidual responses in Trials 2 and 3.  

The other simulation, 11c Time series 3 tri-
als+repeats.sas, illustrates modeling when the 
test for each trial is repeated immediately, rather 
than repeating the trials a week later. If you can 
convince your subjects to do the extra tests, it's a 
great way to improve precision. Obviously, you 
couldn't do six VO2max tests on the same day, 
so I have imagined it's a test of sprint speed, with 
an acute intervention after the two sprints of the 
first trial. I have introduced a variable Rep (short 
for repetition) to estimate the means for each 
repetition within each trial (but I haven't both-
ered to simulate any changes in the mean be-
tween repetitions). Hence the fixed-effects 
model is: 
model Speed=Trial Rep Trial*Rep; 

I have added some extra residual random error 

on both repetitions in the first trial, to simulate 
familiarization, and I have allowed for this extra 
error and the possibility that the residual error is 
different for the repetitions in the second and 
third trial with repeated/group=Trial. Only one 
random statement is needed to estimate each 
kid's true score, the modifying effect of true 
score on the individual responses in Trials 2 and 
3, and the correlated individual responses in Tri-
als 2 and 3. Here is the random-effects model: 
random Int XvarTrial2 XvarTrial3 
/subject=ChildID type=un; 

repeated/group=Trial; 
parms 100 5 5  5 5 5  10 10 10; 

Within-Subject Linear Modeling 
12 Within subject modeling.sas 
13 Within & between subject modeling.sas 

The first model I presented in this article was 
a simple linear regression, in which a numeric 
dependent variable (e.g., VO2max) is predicted 
by a numeric predictor variable (e.g., Age) with 
an equation representing a straight line: 
model VO2max=Age; 
There are no random effects, because each ob-
servation comes from a different kid.  

But suppose each kid is measured every year 
over a period of years. Or, if the subjects are ath-
letes, imagine their performance in tests or in 
competitions has been monitored for months or 
years. You could fit a different straight line to 
each kid (or athlete), in SAS simply by sorting 
the data by ChildID and adding by ChildID 
to the proc mixed step. Then you would have to 
do an additional complicated analysis to get the 
average slope and its uncertainty (complicated, 
because it should be a meta-analytic model, to 
account for the uncertainty in each kid's slope). 
Things would get even more complicated if you 
had Sex in the model, and you wanted to com-
pare the average slopes of the boys and the girls, 
or to compare the predicted means of boys and 
girls at different ages.  

So, instead of doing additional mind-numbing 
analyses, why not use a mixed model to put all 
the data into one analysis and allow for every kid 
to have a different straight line? The fixed-effect 
model is the same, and it gives the mean slope 
and intercept for all the kids. Here's the random-
effects model: 
random Int Age/subject=ChildID 
type=un; 
It's called a random intercepts and slopes 

model, because the Int represents a different rel-
ative intercept and the Age represents a different 
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relative slope, both relative to the mean intercept 
and slope specified by the fixed-effects model. 
Think about the hats metaphor here: every kid 
has one number from the Int hat (the ChildID 
hat) and one number from the Age hat (the 
Age*ChildID hat). Age is a numeric effect, so it 
has only one level within each child, hence only 
one number for each child. (If Age had been 
nominal, e.g., AgeGroup with three levels, then 
there would be up to three levels within each 
child.). So, we have a set of values of intercepts 
and a set of values of slopes, and they could be 
correlated. In fact, they are definitely negatively 
correlated, if Age has its usual value in years, 
starting at zero. To understand why, imagine a 
kid's straight line, with a positive slope. The in-
tercept represents the predicted value of 
VO2max at an age of zero. I guess you would 
predict a VO2max of zero, but that's not what the 
data will predict. For example, imagine that all 
the kids have the same mean age of, say, 12 y, 
and a range of values from 8 to 16 y. Now, kids 
who stay sedentary over that age range might 
change their VO2max very little, so the slope 
will be only slightly positive (it could even be 
negative, if the kid's body mass increases 
through deposition of fat). If you extrapolate 
back to age zero, the VO2max will be positive 
and only a little less than the value at age 12 (or 
even more than at age 12!). Other kids, who 
gradually get more active, will increase their 
VO2max, and rising levels of hormones that dif-
fer between kids will also make a difference. 
Their slopes will be more positive, so when you 
extrapolate back to age zero, the intercept will be 
less positive, or even negative. In other words, 
kids who differ in their slopes will differ in-
versely in their intercepts: the more positive the 
slope, the less positive or even negative the in-
tercept, i.e., there is a negative correlation or a 
negative covariance between the random effect 
for intercept and Age. Hence the need for 
type=un.  

It's important to realize that the covariance in 
this example is an artifact arising from the fact 
that the intercept represents a value extrapolated 
well below the values of the predictor. It's bor-
ing, because it has no useful interpretation, but 
we absolutely have to include it, or the values of 
the fixed and random effects and their uncertain-
ties will be untrustworthy. The fixed- and ran-
dom-effect intercepts are also boring. Who cares 
about the mean predicted VO2max at age zero 

(the fixed-effect intercept)? Who cares about dif-
ferences between kids at age zero (the random-
effect intercepts)? 

There is a way to make the intercepts and the 
covariance interesting. Imagine again that all the 
kids have the same mean age of around 12 y. 
Now let's draw the Y axis through that mean age; 
in other words, let's rescale Age so that its mean 
is zero. You rescale simply by subtracting the 
mean age from each kid's age, or you can sub-
tract a reference age close to the mean. Now the 
intercepts represent the mean and individual dif-
ferences in VO2max at the mean or reference 
age, and there is little or no artifactual covariance 
between the intercepts and the slopes. Hence any 
covariance you do see will represent something 
potentially useful. For example, in a monitoring 
study of performance of athletes with a lot of re-
peated measurement over the monitoring period, 
you may see that athletes with overall higher per-
formance (a higher positive value for the inter-
cept) have a smaller positive slope, because they 
have less headroom to improve. In the first pro-
gram, I have used a covariance factor to add a 
component of individual differences in the slope 
to reflect this scenario for the linear trends in the 
kids' VO2max vs age: kids with overall higher 
VO2max improve less. You can change the sign 
of the covariance factor to make kids with higher 
VO2max improve even more.  

It's also important to realize that with repeated 
measures and a random effect for subject iden-
tity, all the effects are within-subject effects. 
There might be positive slopes within each sub-
ject and therefore an overall mean within-subject 
positive slope, yet if you plot the means of the 
dependent and predictor variable for each sub-
ject, you won't see exactly the same positive 
slope between the means; that is, the within-sub-
ject relationship will be different from the be-
tween-subject relationship. They could even 
have opposite signs. The second program simu-
lates this scenario, for a dependent variable and 
data more like what you might encounter when 
monitoring performance of athletes. Mostly the 
between-subject relationship doesn't matter, be-
cause mostly you are interested in within-subject 
effects, and with most data, the between-subject 
slope doesn't affect the within-subject slope sub-
stantially. Of course, if the subject means for the 
predictor are all the same (the repeated measure-
ments of the subjects all have the same age 
range, for example, as in the first program), you 
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can't have a between-subject relationship any-
way. If the means aren't all the same, then to be 
certain that the between-subject slope doesn't af-
fect the within-subject slope, you have to rescale 
each subject's mean to zero. The second program 
includes this rescaling, along with a covariance 
factor to add a component of individual differ-
ences in the slope correlated with the subjects' 
true ability. 

If you want an estimate of the between-subject 
relationship (the relationship between the sub-
ject means of the predictor and the subject means 
of the dependent), you can simply derive the 
means and do a separate simple linear regression 
with them, as shown in the second program. The 
observed between-subject slope is attenuated to 
some extent, which happens when there is 
"noise" in values of the predictor relative to the 
true between-subject SD of the predictor. When 
the noise is random and unrelated to the predic-
tor, there is a simple formula to adjust for it. Here 
the noise is the standard error of the mean of 
each subject's values of the predictor; this noise 
is related to the dependent by the within-subject 
relationship, so there is no simple adjustment. 
The noise is also responsible for making the ob-
served standard error of the estimate greater than 
the simulated value, again with no simple adjust-
ment to remove the bias. 

What about the residuals in models with ran-
dom intercepts and slopes? They represent the 
within-subject variability between repeated 
measurements, like the typical error in a reliabil-
ity study, but here they are the within-subject 
standard error of the estimate. To allow for real 
differences in the residuals between subjects 
(i.e., real differences in the standard error of the 
estimate of each subject's straight line), you 
would include this: 
repeated/group=ChildID; 
If there are boys and girls in the data, you could 
make it… 
repeated/group=ChildID*Sex; 
…or if you have only a few repeated measure-
ments for each child, make it simply… 
repeated/group=Sex; 

The above examples of within-subject model-
ing assume a simple linear relationship within 
each subject. You should check for non-linearity 
by plotting residual vs predictor (not predicted) 
values, where non-linearity will be revealed as 
non-uniformity in the scatter. In that case, you 
might have to play with a polynomial relation-
ship. For example, here is a quadratic: 

model VO2max=Age Age*Age; 
random Int Age Age*Age/subject=ChildID 
type=un; 
Quadratic effects are a bit hard to interpret, but 

a huge advantage is that they allow prediction of 
a maximum or a minimum overall and for each 
individual (e.g., some kids might top out post pu-
berty), assuming that a quadratic fits the data rea-
sonably well. A cubic might give a better fit for 
curves that trend towards a plateau, and it will 
still give maxima or minima, if there are any, but 
you have to solve a quadratic in the coefficients 
to derive them. The mean and individual lines 
(simple linear) or curves (polynomial) can and 
should be visualized by plotting the predicted 
mean and individual values available as data sets 
via options in the model statement. I haven't 
done that with the simulations (yet). 

Instead of polynomials, you could parse Age 
into several age groups and use these models: 
model VO2max=AgeGroup; 
random Int AgeGroup/subject=ChildID 
type=un; 

The fixed and random effects for AgeGroup will 
be easier to interpret than those for a numeric 
quadratic. The fixed effects obviously provide 
the mean changes between the age groups. The 
random effects aren't too difficult to understand, 
either: UN(1,1) (corresponding to Int) is the dif-
ferences between the kid means, while UN(2,2), 
UN(3,3)… are the individual differences from 
the mean for the first, second… age group. For-
get about interpreting the covariances. Again, 
process predicted values to show the mean and 
individual trends, here with line segments con-
necting the predicted means and each kid's pre-
dicted values in the age groups. Again, I haven't 
done that in the simulations. 
Generalized Linear Mixed Models 

In all the foregoing analyses, the dependent 
variable is continuous, the distribution of values 
(or more properly, the distribution of the residu-
als) is assumed to be approximately normal, the 
fixed and random effects predict group and indi-
vidual means, the random effects represent SDs, 
and the linear model was realized with Proc 
Mixed. But some dependent variables are decid-
edly non-normal: a count of events (such as a 
count of injuries in each individual), a count of 
something expressed as a proportion of the total 
(such as proportion of a team experiencing an in-
jury), and a proportion or probability that some-
thing happens per unit of time (such as the risk, 
or more properly the hazard, of injury per month 



Hopkins: Fixed and random effects in SAS Page 25 

 Sportscience 26, 4-25, 2022 

or per game). These variables need to be ana-
lyzed with Proc Glimmix.  

You tell Proc Glimmix how your data are dis-
tributed: Poisson for counts and binomial for 
proportions and proportions per unit time. The 
linear model predicts mean values, but the ef-
fects are factors: we speak of a 30% increase in 
the risk of dying if you do or don't do such-and-
such, which means a factor increase of 1.3. 
Hence there has to be some kind of log transfor-
mation to go from a multiplicative model to an 
additive or linear model. The transformation is 
specified as a link function: log for counts, 
logit (log-odds) for proportions, and cloglog 
(complementary log-log) for proportions per 
unit time. Glimmix doesn't actually transform 
the data, but it fits the data to the transformed 
model, and it back-transforms the effects to fac-
tors. The log transformation is simple enough, 
but logit is a bit mysterious: what you actually 
model is not the log of the proportion (p), but the 
log of proportion expressed as odds, log(p/(1-
p)). Hence the effects back-transform to odds ra-
tios, and they need further transformation to pro-
portion ratios or proportion differences, if you 
are to make any sense of them. The cloglog 
transformation is even more mysterious: here 
you are going from data representing a real pro-
portion in a real period of time to an infinitesimal 
proportion in an infinitesimal unit of time, 
achieved with the link function log(-log(1-p)); 
the effects back-transform to hazard ratios (ra-
tios of proportions per unit time, representing in-
stantaneous relative risks). A more advanced 
procedure for dealing with logs of hazards is 
called proportional-hazards regression, realized 
with Proc Phreg. 

The fixed effects model with Proc Glimmix is 
the same as with Proc Mixed, but you are speci-
fying a linear model predicting log counts, log 
odds, or log hazards. The random-effects model 
is also the same, but the residuals are different: 
they are automatically estimated as residuals you 
would expect for an observed number of counts, 

or for an observed proportion of events for a 
given number of trials, using the respective dis-
tributions, Poisson or binomial. The actual dis-
tribution may differ from the expected Poisson 
or binomial by being over-dispersed or under-
dispersed, meaning that the residual variance is 
greater or less than the expected variance. So, 
you allow for that by specifying: 
random _residual_; 

There is no repeated statement, but you can 
specify different residual variances with, for ex-
ample: 
random _residual_/group=Sex; 

Incidentally, you can get Glimmix to analyze 
normally distributed data, by specifying a nor-
mal distribution. Glimmix assumes the unit nor-
mal distribution, i.e., a variance of 1, hence you 
must use random _residual_ to get the actual 
variance of the residuals, otherwise the analysis 
won't make sense. The link function would be 
either the identity link, or if your data need log 
transformation and you let Glimmix do it, the log 
link. But don't go there; use Proc Mixed. 
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